NEET MDS Lessons
Biochemistry
SELENIUM
normal serum level is 50-100 mg/day
Selenium dependent enzymes include glutathione Peroxidase and 5-de-iodinase. Selenium concentration in testis is the highest in adult. It is very necessary for normal development and maturation of sperm.
The Hemoglobin Buffer Systems
These buffer systems are involved in buffering CO2 inside erythrocytes. The buffering capacity of hemoglobin depends on its oxygenation and deoxygenation. Inside the erythrocytes, CO2 combines with H2O to form carbonic acid (H2CO3) under the action of carbonic anhydrase.
At the blood pH 7.4, H2CO3 dissociates into H+ and HCO3 − and needs immediate buffering.
TRIGLYCEROL
Triacylglycerols (formerly triglycerides) are the esters of glycerol with fatty acids. The fats and oils that are widely distributed in both plants and animals are chemically triacylglycerols.
They are insoluble in water and non-polar in character and commonly known as neutral fats.
Triacylglycerols are the most abundant dietary lipids. They are the form in which we store reduced carbon for energy. Each triacylglycerol has a glycerol backbone to which are esterified 3 fatty acids. Most triacylglycerols are "mixed." The three fatty acids differ in chain length and number of double bonds
Structures of acylglycerols :
Monoacylglycerols, diacylglycerols and triacylglycerols, respectively consisting of one, two and three molecules of fatty acids esterified to
a molecule of glycerol
Lipases hydrolyze triacylglycerols, releasing one fatty acid at a time, producing diacylglycerols, and eventually glycerol
Glycerol arising from hydrolysis of triacylglycerols is converted to the Glycolysis intermediate dihydroxyacetone phosphate, by reactions catalyzed by:
(1) Glycerol Kinase
(2) Glycerol Phosphate Dehydrogenase
Free fatty acids, which in solution have detergent properties, are transported in the blood bound to albumin, a serum protein produced by the liver.
Several proteins have been identified that facilitate transport of long chain fatty acids into cells, including the plasma membrane protein CD36
Pantothenic Acid
Pantothenic Acid is involved in energy production, and aids in the formation of hormones and the metabolism of fats, proteins, and carbohydrates from food.
RDA The Adequate Intake (AI) for Pantothenic Acid is 5 mg/day for both adult males and females.
Pantothenic Acid Deficiency
Pantothenic Acid deficiency is uncommon due to its wide availability in most foods.
Niacin: Vitamin B3, Nicotinamide, Nicotinic Acid Niacin, or vitamin B3,
is involved in energy production, normal enzyme function, digestion, promoting normal appetite, healthy skin, and nerves.
RDA Males: 16 mg/day; Females: 14 mg/day
Niacin Deficiency : Pellagra is the disease state that occurs as a result of severe niacin deficiency. Symptoms include cramps, nausea, mental confusion, and skin problems.
FLUORIDE
The safe limit of fluorine is about 1PPM in water. But excess of fluoride causes Flourosis
Flourosis is more dangerous than caries. When Fluoride content is more than 2 PPM, it will cause chronic intestinal upset, gastroenteritis, loss of weight, osteosclerosis, stratification and discoloration of teeth
IRON
The normal limit for iron consumption is 20 mg/day for adults, 20-30 mg/day for children and 40 mg/day for pregnant women.
Milk is considered as a poor source of iron.
Factors influencing absorption of iron Iron is absorbed by upper part of duodenum and is affected by various factors
(a) Only reduced form of iron (ferrous) is absorbed and ferric form are not absorbed
(b) Ascorbic acid (Vitamin C) increases the absorption of iron (c) The interfering substances such as phytic acid and oxalic acid decreases absorption of iron
Regulation of absorption of Iron
Absorption of iron is regulated by three main mechanisms, which includes
(a) Mucosal Regulation
(b) Storer regulation
(c) Erythropoietic regulation
In mucosal regulation absorption of iron requires DM-1 and ferroportin. Both the proteins are down regulated by hepcidin secreted by liver. The above regulation occurs when the body irons reserves are adequate. When the body iron content gets felled, storer regulation takes place. In storer regulation the mucosal is signaled for increase in iron absorption. The erythropoietic regulation occurs in response to anemia. Here the erythroid cells will signal the mucosa to increase the iron absorption.
Iron transport in blood
The transport form of iron in blood is transferin. Transferin are glycoprotein secreted by liver. In blood, the ceruloplasmin is the ferroxidase which oxidizes ferrous to ferric state.
Storage form of iron is ferritin. Almost no iron is excreted through urine.
Anemia
Anemia is the most common nutritional deficiency disease. The microscopic appearance of anemia is characterized by microcytic hypochromic anemia
The abnormal gene responsible for hemosiderosis is located on the short arm of chromosome No.6.
The main causes of iron deficiency or anemia are
(a) Nutritional deficiency of iron (b) Lack of iron absorption (c) Hook worm infection (d) Repeated pregnancy (e) Chronic blood loss (f) Nephrosis (g) Lead poisoning