NEET MDS Lessons
Biochemistry
Buffers
• Biological systems use buffers to maintain pH.
• Definition: A buffer is a solution that resists a significant change in pH upon addition of an acid or a base.
• Chemically: A buffer is a mixture of a weak acid and its conjugate base
• Example: Bicarbonate buffer is a mixture of carbonic acid (the weak acid) and the bicarbonate ion (the conjugate base): H2CO3 + HCO3 –
• All OH- or H+ ions added to a buffer are consumed and the overall [H+ ] or pH is not altered
H2CO3 + HCO3 - + H+ <- -> 2H2CO3
H2CO3 + HCO3 - + OH- <- -> 2HCO3 - + H2O
• For any weak acid / conjugate base pair, the buffering range is its pKa +1.
It should be noted that around the pKa the pH of a solution does not change appreciably even when large amounts of acid or base are added. This phenomenon is known as buffering. In most biochemical studies it is important to perform experiments, that will consume H+ or OH- equivalents, in a solution of a buffering agent that has a pKa near the pH optimum for the experiment.
Most biologic fluids are buffered near neutrality. A buffer resist a pH change and consists of a conjugate acid/base pair.
Important Physiological Buffers include carbonate (H2CO3/HCO3-),
Phosphate (H2PO-4 /HPO2-4) and various protiens
Cori Cycle
The Cori Cycle operates during exercise, when aerobic metabolism in muscle cannot keep up with energy needs.
For a brief burst of ATP utilization, muscle cells utilize ~P stored as phosphocreatine. For more extended exercise, ATP is mainly provided by Glycolysis.
Lactate, produced from pyruvate, passes via the blood to the liver where it is converted to glucose. The glucose may travel back to the muscle to fuel Glycolysis.
The Cori Cycle costs 6 P in liver for every 2P made available in muscle. The net cost is 4 P Although costly in terms of "high energy" bonds, the Cori Cycle allows the organism to accommodate to large fluctuations in energy needs of skeletal muscle between rest and exercise.
Pentose Phosphate Pathway (Hexose Monophosphate Shunt)
The pentose phosphate pathway is primarily an anabolic pathway that utilizes the 6 carbons of glucose to generate 5 carbon sugars and reducing equivalents. However, this pathway does oxidize glucose and under certain conditions can completely oxidize glucose to CO2 and water. The primary functions of this pathway are:
- To generate reducing equivalents, in the form of NADPH, for reductive biosynthesis reactions within cells.
- To provide the cell with ribose-5-phosphate (R5P) for the synthesis of the nucleotides and nucleic acids.
- Although not a significant function of the PPP, it can operate to metabolize dietary pentose sugars derived from the digestion of nucleic acids as well as to rearrange the carbon skeletons of dietary carbohydrates into glycolytic/gluconeogenic intermediates
Enzymes that function primarily in the reductive direction utilize the NADP+/NADPH cofactor pair as co-factors as opposed to oxidative enzymes that utilize the NAD+/NADH cofactor pair. The reactions of fatty acid biosynthesis and steroid biosynthesis utilize large amounts of NADPH. As a consequence, cells of the liver, adipose tissue, adrenal cortex, testis and lactating mammary gland have high levels of the PPP enzymes. In fact 30% of the oxidation of glucose in the liver occurs via the PPP. Additionally, erythrocytes utilize the reactions of the PPP to generate large amounts of NADPH used in the reduction of glutathione. The conversion of ribonucleotides to deoxyribonucleotides (through the action of ribonucleotide reductase) requires NADPH as the electron source, therefore, any rapidly proliferating cell needs large quantities of NADPH.
Regulation: Glucose-6-phosphate Dehydrogenase is the committed step of the Pentose Phosphate Pathway. This enzyme is regulated by availability of the substrate NADP+. As NADPH is utilized in reductive synthetic pathways, the increasing concentration of NADP+ stimulates the Pentose Phosphate Pathway, to replenish NADPH
Glycogenolysis
Breakdown of glycogen to glucose is called glycogenolysis. The Breakdown of glycogen takes place in liver and muscle. In Liver , the end product of glycodgen breakdown is glucose where as in muscles the end product is Lactic acid Under the combined action of Phosphorylase (breaks only –α-(1,4) linkage )and Debranching enzymes (breaks only α-(1,6) linkage )glycogen is broken down to glucose.
IONIZATION OF WATER, WEAK ACIDS AND WEAK BASES
The ionization of water can be described by an equilibrium constant. When weak acids or weak bases are dissolved in water, they can contribute H+ by ionizing (if acids) or consume H+ by being protonated (if bases). These processes are also governed by equilibrium constants
Water molecules have a slight tendency to undergo reversible ionization to yield a hydrogen ion and a hydroxide ion :
H2O = H+ + OH−
The position of equilibrium of any chemical reaction is given by its equilibrium constant. For the general reaction,
A+B = C + D
IRON
The normal limit for iron consumption is 20 mg/day for adults, 20-30 mg/day for children and 40 mg/day for pregnant women.
Milk is considered as a poor source of iron.
Factors influencing absorption of iron Iron is absorbed by upper part of duodenum and is affected by various factors
(a) Only reduced form of iron (ferrous) is absorbed and ferric form are not absorbed
(b) Ascorbic acid (Vitamin C) increases the absorption of iron (c) The interfering substances such as phytic acid and oxalic acid decreases absorption of iron
Regulation of absorption of Iron
Absorption of iron is regulated by three main mechanisms, which includes
(a) Mucosal Regulation
(b) Storer regulation
(c) Erythropoietic regulation
In mucosal regulation absorption of iron requires DM-1 and ferroportin. Both the proteins are down regulated by hepcidin secreted by liver. The above regulation occurs when the body irons reserves are adequate. When the body iron content gets felled, storer regulation takes place. In storer regulation the mucosal is signaled for increase in iron absorption. The erythropoietic regulation occurs in response to anemia. Here the erythroid cells will signal the mucosa to increase the iron absorption.
Iron transport in blood
The transport form of iron in blood is transferin. Transferin are glycoprotein secreted by liver. In blood, the ceruloplasmin is the ferroxidase which oxidizes ferrous to ferric state.
Storage form of iron is ferritin. Almost no iron is excreted through urine.
Anemia
Anemia is the most common nutritional deficiency disease. The microscopic appearance of anemia is characterized by microcytic hypochromic anemia
The abnormal gene responsible for hemosiderosis is located on the short arm of chromosome No.6.
The main causes of iron deficiency or anemia are
(a) Nutritional deficiency of iron (b) Lack of iron absorption (c) Hook worm infection (d) Repeated pregnancy (e) Chronic blood loss (f) Nephrosis (g) Lead poisoning
CHOLESTEROL AND ITS IMPORTANCE
Cholesterol is an important lipid found in the cell membrane. It is a sterol, which means that cholesterol is a combination of a steroid and an alcohol .
It is an important component of cell membranes and is also the basis for the synthesis of other steroids, including the sex hormones estradiol and testosterone, as well as other steroids such as cortisone and vitamin D.
In the cell membrane, the steroid ring structure of cholesterol provides a rigid hydrophobic structure that helps boost the rigidity of the cell membrane.
Without cholesterol the cell membrane would be too fluid. In the human body, cholesterol is synthesized in the liver.
Cholesterol is insoluble in the blood, so when it is released into the blood stream it forms complexes with lipoproteins.
Cholesterol can bind to two types of lipoprotein, called high-density lipoprotein (HDL) and low-density lipoprotein (LDL).
A lipoprotein is a spherical molecule with water soluble proteins on the exterior. Therefore, when cholesterol is bound to a lipoprotein, it becomes blood soluble and can be transported throughout the body.
HDL cholesterol is transported back to the liver. If HDL levels are low, then the blood level of cholesterol will increase.
High levels of blood cholesterol are associated with plaque formation in the arteries, which can lead to heart disease and stroke.