NEET MDS Lessons
Biochemistry
Cori Cycle
The Cori Cycle operates during exercise, when aerobic metabolism in muscle cannot keep up with energy needs.
For a brief burst of ATP utilization, muscle cells utilize ~P stored as phosphocreatine. For more extended exercise, ATP is mainly provided by Glycolysis.
Lactate, produced from pyruvate, passes via the blood to the liver where it is converted to glucose. The glucose may travel back to the muscle to fuel Glycolysis.
The Cori Cycle costs 6 P in liver for every 2P made available in muscle. The net cost is 4 P Although costly in terms of "high energy" bonds, the Cori Cycle allows the organism to accommodate to large fluctuations in energy needs of skeletal muscle between rest and exercise.
Weak Acids and pKa
• The strength of an acid can be determined by its dissociation constant, Ka.
• Acids that do not dissociate significantly in water are weak acids.
• The dissociation of an acid is expressed by the following reaction: HA = H+ + A- and the dissociation constant Ka = [H+ ][A- ] / [HA]
• When Ka < 1, [HA] > [H+ ][A- ] and HA is not significantly dissociated. Thus, HA is a weak acid when ka < 1.
• The lesser the value of Ka, the weaker the acid.
• Similar to pH, the value of Ka can also be represented as pKa.
• pKa = -log Ka.
• The larger the pKa, the weaker the acid.
• pKa is a constant for each conjugate acid and its conjugate base pair.
• Most biological compounds are weak acids or weak bases.
Enzymes are protein catalyst produced by a cell and responsible ‘for the high rate’ and specificity of one or more intracellular or extracellular biochemical reactions.
Enzymes are biological catalysts responsible for supporting almost all of the chemical reactions that maintain animal homeostasis. Enzyme reactions are always reversible.
The substance, upon which an enzyme acts, is called as substrate. Enzymes are involved in conversion of substrate into product.
Almost all enzymes are globular proteins consisting either of a single polypeptide or of two or more polypeptides held together (in quaternary structure) by non-covalent bonds. Enzymes do nothing but speed up the rates at which the equilibrium positions of reversible reactions are attained.
In terms of thermodynamics, enzymes reduce the activation energies of reactions, enabling them to occur much more readily at low temperatures - essential for biological systems.
Glycolysis enzymes are located in the cytosol of cells. Pyruvate enters the mitochondrion to be metabolized further
Mitochondrial compartments: The mitochondrial matrix contains Pyruvate Dehydrogenase and enzymes of Krebs Cycle, plus other pathways such as fatty acid oxidation.
Pyruvate Dehydrogenase catalyzes oxidative decarboxylation of pyruvate, to form acetyl-CoA
FAD (Flavin Adenine Dinucleotide) is a derivative of the B-vitamin riboflavin (dimethylisoalloxazine-ribitol). The flavin ring system undergoes oxidation/reduction as shown below. Whereas NAD+ is a coenzyme that reversibly binds to enzymes, FAD is a prosthetic group, that is permanently part of the complex.
FAD accepts and donates 2 electrons with 2 protons (2 H):
Thiamine pyrophosphate (TPP) is a derivative of thiamine (vitamin B1). Nutritional deficiency of thiamine leads to the disease beriberi. Beriberi affects especially the brain, because TPP is required for carbohydrate metabolism, and the brain depends on glucose metabolism for energy
Acetyl CoA, a product of the Pyruvate Dehydrogenase reaction, is a central compound in metabolism. The "high energy" thioester linkage makes it an excellent donor of the acetate moiety
For example, acetyl CoA functions as:
- input to the Krebs Cycle, where the acetate moiety is further degraded to CO2.
- donor of acetate for synthesis of fatty acids, ketone bodies, and cholesterol.
ATPs formed in TCA cycle from one molecule of Pyruvate
1. 3ATP 7. 3ATP 5. 3 ATP
8. 1 ATP 9. 2 ATP 11.3 ATP Total =15 ATP.
ATPS formed from one molecule of Acetyl CoA =12ATP
ATPs formed from one molecule of glucose after complete oxidation
One molecule of glucose -->2 molecules of pyruvate
['By glycolysis] ->8 ATP
2 molecules of pyruvate [By TCA cycle] -> 30 ATP
Total = 38 ATP
ESSENTIAL FATTY ACIDS (EFAs) Polyunsaturated FAs,such as Linoleic acid and g(gamma)- Linolenic acid, are ESSENTIAL FATTY ACIDS — we cannot make them, and we need them, so we must get them in our diets mostly from plant sources.
SELENIUM
normal serum level is 50-100 mg/day
Selenium dependent enzymes include glutathione Peroxidase and 5-de-iodinase. Selenium concentration in testis is the highest in adult. It is very necessary for normal development and maturation of sperm.
The input to fatty acid synthesis is acetyl-CoA, which is carboxylated to malonyl-CoA.
The ATP-dependent carboxylation provides energy input. The CO2 is lost later during condensation with the growing fatty acid. The spontaneous decarboxylation drives the condensation.
fatty acid synthesis
acetyl-CoA + 7 malonyl-CoA + 14 NADPH → palmitate + 7 CO2 + 14 NADP+ + 8 CoA
ATP-dependent synthesis of malonate:
8 acetyl-CoA + 14 NADPH + 7 ATP → palmitate + 14 NADP+ + 8 CoA + 7 ADP + 7 Pi
Fatty acid synthesis occurs in the cytosol. Acetyl-CoA generated in the mitochondria is transported to the cytosol via a shuttle mechanism involving citrate