NEET MDS Lessons
Biochemistry
Vitamin B6: Pyridoxine, Pyridoxal, Pyridoxamine
Aids in protein metabolism and red blood cell formation. It is also involved in the body’s production of chemicals such as insulin and hemoglobin.
Vitamin B6 Deficiency Deficiency symptoms include skin disorders, dermatitis, cracks at corners of mouth, anemia, kidney stones, and nausea. A vitamin B6 deficiency in infants can cause mental confusion.
General structure of amino acids
- All organisms use same 20 amino acids.
- Variation in order of amino acids in polypeptides allow limitless variation.
- All amino acids made up of a chiral carbon attached to 4 different groups
- hydrogen
- amino group
- carboxyl
- R group: varies between different amino acids
- Two stereoisomers (mirror images of one another) can exist for each amino acid. Such stereoisomers are called enantiomers. All amino acids found in proteins are in the L configuration.
- Amino acids are zwitterions at physiological pH 7.4. ( i.e. dipolar ions). Some side chains can also be ionized
Structures of the 20 common amino acids
- Side chains of the 20 amino acids vary. Properties of side chains greatly influence overall conformation of protein. E.g. hydrophobic side chains in water-soluble proteins fold into interior of protein
- Some side chains are nonpolar (hydrophobic), others are polar or ionizable at physiological pH (hydrophilic).
- Side chains fall into several chemical classes: aliphatic, aromatic, sulfur-containing, alcohols, bases, acids, and amides. Also catagorized as to hydrophobic vs hydrophilic.
- Must know 3-letter code for each amino acid.
Aliphatic R Groups
- Glycine: least complex structure. Not chiral. Side chain small enough to fit into niches too small for other amino acids.
- Alanine, Valine, Leucine, Isoleucine
- no reactive functional groups
- highly hydrophobic: play important role in maintaining 3-D structures of proteins because of their tendency to cluster away from water
- Proline has cyclic side chain called a pyrolidine ring. Restricts geometry of polypeptides, sometimes introducing abrupt changes in direction of polypeptide chain.
Aromatic R Groups
- Phenylalanine, Tyrosine, Tryptophan
- Phe has benzene ring therefore hydrophobic.
- Tyr and Trp have side chains with polar groups, therefore less hydrophobic than Phe.
- Absorb UV 280 nm. Therefore used to estimate concentration of proteins.
Sulfur-containing R Groups
- Methionine and Cysteine)
- Met is hydrophobic. Sulfur atom is nucleophilic.
- Cys somewhat hydrophobic. Highly reactive. Form disulfide bridges and may stabilize 3-D structure of proteins by cross-linking Cys residues in peptide chains.
Side Chains with Alcohol Groups
- Serine and Threonine
- have uncharged polar side chains. Alcohol groups give hydrophilic character.
- weakly ionizable.
Basic R Groups
- Histidine, Lysine, and Arginine.
- have hydrophilic side chains that are nitrogenous bases and positively charged at physiological pH.
- Arg is most basic a.a., and contribute positive charges to proteins.
Acidic R Groups and their Amide derivatives
- Aspartate, Glutamate
- are dicarboxylic acids, ionizable at physiological pH. Confer a negative charge on proteins.
- Asparagine, Glutamine
- amides of Asp and Glu rspectively
- highly polar and often found on surface of proteins
- polar amide groups can form H-bonds with atoms in other amino acids with polar side chains.
|
b Oxidation Pathway |
Fatty Acid Synthesis |
pathway location |
mitochondrial matrix |
cytosol |
acyl carriers (thiols) |
Coenzyme-A |
phosphopantetheine (ACP) & cysteine |
electron acceptors/donor |
FAD & NAD+ |
NADPH |
hydroxyl intermediate |
L |
D |
2-C product/donor |
acetyl-CoA |
malonyl-CoA (& acetyl-CoA) |
VITAMINS
Based on solubility Vitamins are classified as either fat-soluble (lipid soluble) or water-soluble. Vitamins A, D, E and K are fat-soluble
Vitamin C and B is water soluble.
B-COMPLEX VITAMINS
Eight of the water-soluble vitamins are known as the vitamin B-complex group: thiamin (vitamin B1), riboflavin (vitamin B2), niacin (vitamin B3), vitamin B6 (pyridoxine), folate (folic acid), vitamin B12, biotin and pantothenic acid.
Parathyroid Hormone
Parathyroid hormone (PTH), parathormone or parathyrin, is secreted by the chief cells of the parathyroid glands.
It acts to increase the concentration of calcium (Ca2+) in the blood, whereas calcitonin (a hormone produced by the parafollicular cells of the thyroid gland) acts to decrease calcium concentration.
PTH acts to increase the concentration of calcium in the blood by acting upon the parathyroid hormone 1 receptor (high levels in bone and kidney) and the parathyroid hormone 2 receptor (high levels in the central nervous system, pancreas, testis, and placenta).
Effect of parathyroid hormone in regulation of serum calcium.
Bone -> PTH enhances the release of calcium from the large reservoir contained in the bones. Bone resorption is the normal destruction of bone by osteoclasts, which are indirectly stimulated by PTH forming new osteoclasts, which ultimately enhances bone resorption.
Kidney -> PTH enhances active reabsorption of calcium and magnesium from distal tubules of kidney. As bone is degraded, both calcium and phosphate are released. It also decreases the reabsorption of phosphate, with a net loss in plasma phosphate concentration. When the calcium:phosphate ratio increases, more calcium is free in the circulation.
Intestine -> PTH enhances the absorption of calcium in the intestine by increasing the production of activated vitamin D. Vitamin D activation occurs in the kidney. PTH converts vitamin D to its active form (1,25-dihydroxy vitamin D). This activated form of vitamin D increases the absorption of calcium (as Ca2+ ions) by the intestine via calbindin.
CALCIUM
Total calcium in the human body is 1 to 1.5kg, out of which 99% is seen in bone and 1% in extracellular fluid. The main source of calcium is milk.
The daily requirement of calcium for child is 1200mg/day and for adult it is 500mg/day. During pregnancy /lactation the calcium requirement is 1500mg/day.
The absorption of calcium takes place in 1st and 2nd part of deuodenum. Calcium absorption requires carrier protein, helped by Ca2+ - dependent ATpase.
Factors responsible for increase in calcium absorption include Vitamin D, Parathyroid hormone, acidity and amino acids. Factors such as phytic acid,oxalates, malabsorption syndromes and Phosphates decreases calcium absorption. The normal calcium level in blood is 9-11mg/dl.
LIPIDS
The lipids are a heterogeneous group of compounds, including fats, oils, steroids, waxes, and related compounds, which are related more by their physical than by their chemical properties.
Lipids are non-polar (hydrophobic) compounds, soluble in organic solvents.
Most membrane lipids are amphipathic, having a non-polar end and a polar end
Lipids are important in biological systems because they form the cell membrane, a mechanical barrier that divides a cell from the external environment.
Lipids also provide energy for life and several essential vitamins are lipids.
Lipids can be divided in two major classes, nonsaponifiable lipids and saponifiable lipids.
A nonsaponifiable lipid cannot be broken up into smaller molecules by hydrolysis, which includes triglycerides, waxes, phospholipids, and sphingolipids.
A saponifiable lipid contains one or more ester groups allowing it to undergo hydrolysis in the presence of an acid, base, or enzyme.
Nonsaponifiable lipids include steroids, prostaglandins, and terpenes
Nonpolar lipids, such as triglycerides, are used for energy storage and fuel.
Polar lipids, which can form a barrier with an external water environment, are used in membranes.
Polar lipids include glycerophospholipids and sphingolipids.
Fatty acids are important components of all of these lipids.