NEET MDS Lessons
Biochemistry
Carbohydrates (glycans) have the basic composition

- Monosaccharides - simple sugars, with multiple hydroxyl groups. Based on the number of carbons (e.g., 3, 4, 5, or 6) a monosaccharide is a triose, tetrose, pentose, or hexose, etc.
- Disaccharides - two monosaccharides covalently linked
- Oligosaccharides - a few monosaccharides covalently linked.
- Polysaccharides - polymers consisting of chains of monosaccharide or disaccharide units
Ampholytes, Polyampholytes, pI and Zwitterion
Many substances in nature contain both acidic and basic groups as well as many different types of these groups in the same molecule. (e.g. proteins). These are called ampholytes (one acidic and one basic group) or polyampholytes (many acidic and basic groups). Proteins contains many different amino acids some of which contain ionizable side groups, both acidic and basic. Therefore, a useful term for dealing with the titration of ampholytes and polyampholytes (e.g. proteins) is the isoelectric point, pI. This is described as the pH at which the effective net charge on a molecule is zero.
For the case of a simple ampholyte like the amino acid glycine the pI, when calculated from the Henderson-Hasselbalch equation, is shown to be the average of the pK for the a-COOH group and the pK for the a-NH2 group:
pI = [pKa-(COOH) + pKa-(NH3+)]/2
For more complex molecules such as polyampholytes the pI is the average of the pKa values that represent the boundaries of the zwitterionic form of the molecule. The pI value, like that of pK, is very informative as to the nature of different molecules. A molecule with a low pI would contain a predominance of acidic groups, whereas a high pI indicates predominance of basic groups.
Clinical significance
Primary hyperparathyroidism is due to autonomous, abnormal hypersecretion of PTH in the parathyroid gland
Secondary hyperparathyroidism is an appropriately high PTH level seen as a physiological response to hypocalcemia.
A low level of PTH in the blood is known as hypoparathyroidism and is most commonly due to damage to or removal of parathyroid glands during thyroid surgery.
LIPIDS
The lipids are a heterogeneous group of compounds, including fats, oils, steroids, waxes, and related compounds, which are related more by their physical than by their chemical properties.
Lipids are non-polar (hydrophobic) compounds, soluble in organic solvents.
Most membrane lipids are amphipathic, having a non-polar end and a polar end
Lipids are important in biological systems because they form the cell membrane, a mechanical barrier that divides a cell from the external environment.
Lipids also provide energy for life and several essential vitamins are lipids.
Lipids can be divided in two major classes, nonsaponifiable lipids and saponifiable lipids.
A nonsaponifiable lipid cannot be broken up into smaller molecules by hydrolysis, which includes triglycerides, waxes, phospholipids, and sphingolipids.
A saponifiable lipid contains one or more ester groups allowing it to undergo hydrolysis in the presence of an acid, base, or enzyme.
Nonsaponifiable lipids include steroids, prostaglandins, and terpenes
Nonpolar lipids, such as triglycerides, are used for energy storage and fuel.
Polar lipids, which can form a barrier with an external water environment, are used in membranes.
Polar lipids include glycerophospholipids and sphingolipids.
Fatty acids are important components of all of these lipids.
Glucagon
Glucagon, a peptide hormone synthesized and secreted from the α-cells of the islets of Langerhans of pancreas, raises blood glucose levels. The pancreas releases glucagon when blood sugar (glucose) levels fall too low. Glucagon causes the liver to convert stored glycogen into glucose, which is released into the bloodstream. Glucagon and insulin are part of a feedback system that keeps blood glucose levels at a stable level.
Regulation and function
Secretion of glucagon is stimulated by hypoglycemia, epinephrine, arginine, alanine, acetylcholine, and cholecystokinin.
Secretion of glucagon is inhibited by somatostatin, insulin, increased free fatty acids and keto acids into the blood, and increased urea production.
Polyprotic Acids
• Some acids are polyprotic acids; they can lose more than one proton.
• In this case, the conjugate base is also a weak acid.
• For example: Carbonic acid (H2CO3 ) can lose two protons sequentially.
• Each dissociation has a unique Ka and pKa value.
Ka1 = [H+ ][HCO3 - ] / [H2CO3]
Ka2 = [H+ ][CO3 -2 ] / [HCO3- ]
Note: (The difference between a weak acid and its conjugate base differ is one hydrogen)
By rearranging the above equation we arrive at the Henderson-Hasselbalch equation:
pH = pKa + log[A-]/[HA]
It should be obvious now that the pH of a solution of any acid (for which the equilibrium constant is known, and there are numerous tables with this information) can be calculated knowing the concentration of the acid, HA, and its conjugate base [A-].
At the point of the dissociation where the concentration of the conjugate base [A-] = to that of the acid [HA]:
pH = pKa + log[1]
The log of 1 = 0. Thus, at the mid-point of a titration of a weak acid:
pKa = pH
In other words, the term pKa is that pH at which an equivalent distribution of acid and conjugate base (or base and conjugate acid) exists in solution.