Talk to us?

Biochemistry - NEETMDS- courses
NEET MDS Lessons
Biochemistry

Keq, Kw and pH

As H2O is the medium of biological systems one must consider the role of this molecule in the dissociation of ions from biological molecules. Water is essentially a neutral molecule but will ionize to a small degree. This can be described by a simple equilibrium equation:

H2O <-------> H+ + OH-

This equilibrium can be calculated as for any reaction:

Keq = [H+][OH-]/[H2O]

Since the concentration of H2O is very high (55.5M) relative to that of the [H+] and [OH-], consideration of it is generally removed from the equation by multiplying both sides by 55.5 yielding a new term, Kw:

Kw = [H+][OH-]

This term is referred to as the ion product. In pure water, to which no acids or bases have been added:

Kw = 1 x 10-14 M2

As Kw is constant, if one considers the case of pure water to which no acids or bases have been added:

[H+] = [OH-] = 1 x 10-7 M

This term can be reduced to reflect the hydrogen ion concentration of any solution. This is termed the pH, where:

pH = -log[H+]

LIPOPROTIENS

Lipoproteins Consist of a Nonpolar Core & a Single Surface Layer of Amphipathic Lipids

The nonpolar lipid core consists of mainly triacylglycerol and cholesteryl ester and is surrounded by a single surface layer of amphipathic phospholipid and cholesterol molecules .These are oriented so that their polar groups face outward to the aqueous medium. The protein moiety of a lipoprotein is known as an apolipoprotein or apoprotein,constituting nearly 70% of some HDL and as little as 1% of Chylomicons. Some apolipoproteins are integral and cannot be removed, whereas others can be freely transferred to other lipoproteins.

There  re five types of lipoproteins, namely chylomicrons, very low density lipoproteins(VLDL)  low density lipoproteins (LDL), high density Lipoproteins (HDL) and free fatty acid-albumin complexes.

The Hemoglobin Buffer Systems

These buffer systems are involved in buffering CO2 inside erythrocytes. The buffering capacity of hemoglobin depends on its oxygenation and deoxygenation. Inside the erythrocytes, CO2 combines with H2O to form carbonic acid (H2CO3) under the action of carbonic anhydrase.

At the blood pH 7.4, H2CO3 dissociates into H+ and HCO3 and needs immediate buffering.

Erythrocytes and the Pentose Phosphate Pathway

The predominant pathways of carbohydrate metabolism in the red blood cell (RBC) are glycolysis, the PPP and 2,3-bisphosphoglycerate (2,3-BPG) metabolism (refer to discussion of hemoglobin for review of the synthesis and role role of 2,3-BPG).

Glycolysis provides ATP for membrane ion pumps and NADH for re-oxidation of methemoglobin. The PPP supplies the RBC with NADPH to maintain the reduced state of glutathione.

The inability to maintain reduced glutathione in RBCs leads to increased accumulation of peroxides, predominantly H2O2, that in turn results in a weakening of the cell wall and concomitant hemolysis.

Accumulation of H2O2 also leads to increased rates of oxidation of hemoglobin to methemoglobin that also weakens the cell wall.

Glutathione removes peroxides via the action of glutathione peroxidase.

The PPP in erythrocytes is essentially the only pathway for these cells to produce NADPH.

Any defect in the production of NADPH could, therefore, have profound effects on erythrocyte survival.

 

b Oxidation Pathway

Fatty Acid Synthesis

pathway location

mitochondrial matrix

cytosol

acyl carriers (thiols)

Coenzyme-A

phosphopantetheine (ACP) & cysteine

electron acceptors/donor

FAD & NAD+

NADPH

hydroxyl intermediate

L

D

2-C product/donor

acetyl-CoA

malonyl-CoA (& acetyl-CoA)

Biotin

 Biotin helps release energy from carbohydrates and aids in the metabolism of fats, proteins and carbohydrates from food.

RDA The Adequate Intake (AI) for Biotin is 30 mcg/day for adult males and females

Biotin Deficiency Biotin deficiency is uncommon under normal circumstances, but symptoms include fatigue, loss of appetite, nausea, vomiting, depression, muscle pains, heart abnormalities and anemia.

The amino acids buffer system

Amino acids contain in their molecule both an acidic (− COOH) and a basic (− NH2) group. They can be visualized as existing in the form of a neutral zwitterion in which a hydrogen atom can pass between the carboxyl and amino groups. 

By the addition or subtraction of a hydrogen ion to or from the zwitterion, either the cation or anion form will be produced 

Thus, when OH ions are added to the solution of amino acid, they take up H+ from it to form water, and the anion is produced. If H+ ions are added, they are taken up by the zwitterion to produce the cation form. In practice, if NaOH is added, the salt H2N - CH- COONa would be formed. and the addition of HCl would result in the formation of amino acid hydrochloride.

Explore by Exams