NEET MDS Lessons
Biochemistry
Sphingosine is an amino alcohol present in sphingomyelins (sphingophospholipids). They do not contain glycerol at all.
Sphingosine is attached by an amide linkage to a fatty acid to produce ceramide. The alcohol group of sphingosine is bound to phosphorylcholine in sphingomyelin structure. .
Sphingomyelins are important constituents of myelin and are found in good quantity in brain and nervous tissues.
COENZYMES
Enzymes may be simple proteins, or complex enzymes.
A complex enzyme contains a non-protein part, called as prosthetic group (co-enzymes).
Coenzymes are heat stable low molecular weight organic compound. The combined form of protein and the co-enzyme are called as holo-enzyme. The heat labile or unstable part of the holo-enzyme is called as apo-enzyme. The apo-enzyme gives necessary three dimensional structures required for the enzymatic chemical reaction.
Co-enzymes are very essential for the biological activities of the enzyme.
Co-enzymes combine loosely with apo-enzyme and are released easily by dialysis. Most of the co-enzymes are derivatives of vitamin B complex
ISO-ENZYMES
Iso-enzymes are physically distinct forms of the same enzyme activity. Higher organisms have several physically distinct versions of a given enzyme, each of which catalyzes the same reaction. Isozymes arise through gene duplication and exhibit differences in properties such as sensitivity to particular regulatory factors or substrate affinity that adapts them to specific tissues or circumstances.
Isoforms of Lactate dehydrogenase is useful in diagnosis of myocardial infarction. While study of alkaline phosphatase isoforms are helpful in diagnosis of various bone disorder and obstructive liver diseases.
The input to fatty acid synthesis is acetyl-CoA, which is carboxylated to malonyl-CoA.
The ATP-dependent carboxylation provides energy input. The CO2 is lost later during condensation with the growing fatty acid. The spontaneous decarboxylation drives the condensation.
fatty acid synthesis
acetyl-CoA + 7 malonyl-CoA + 14 NADPH → palmitate + 7 CO2 + 14 NADP+ + 8 CoA
ATP-dependent synthesis of malonate:
8 acetyl-CoA + 14 NADPH + 7 ATP → palmitate + 14 NADP+ + 8 CoA + 7 ADP + 7 Pi
Fatty acid synthesis occurs in the cytosol. Acetyl-CoA generated in the mitochondria is transported to the cytosol via a shuttle mechanism involving citrate
Vitamin B6: Pyridoxine, Pyridoxal, Pyridoxamine
Aids in protein metabolism and red blood cell formation. It is also involved in the body’s production of chemicals such as insulin and hemoglobin.
Vitamin B6 Deficiency Deficiency symptoms include skin disorders, dermatitis, cracks at corners of mouth, anemia, kidney stones, and nausea. A vitamin B6 deficiency in infants can cause mental confusion.
Ampholytes, Polyampholytes, pI and Zwitterion
Many substances in nature contain both acidic and basic groups as well as many different types of these groups in the same molecule. (e.g. proteins). These are called ampholytes (one acidic and one basic group) or polyampholytes (many acidic and basic groups). Proteins contains many different amino acids some of which contain ionizable side groups, both acidic and basic. Therefore, a useful term for dealing with the titration of ampholytes and polyampholytes (e.g. proteins) is the isoelectric point, pI. This is described as the pH at which the effective net charge on a molecule is zero.
For the case of a simple ampholyte like the amino acid glycine the pI, when calculated from the Henderson-Hasselbalch equation, is shown to be the average of the pK for the a-COOH group and the pK for the a-NH2 group:
pI = [pKa-(COOH) + pKa-(NH3+)]/2
For more complex molecules such as polyampholytes the pI is the average of the pKa values that represent the boundaries of the zwitterionic form of the molecule. The pI value, like that of pK, is very informative as to the nature of different molecules. A molecule with a low pI would contain a predominance of acidic groups, whereas a high pI indicates predominance of basic groups.
FACTORS AFFECTING ENZYME ACTIVITY
Velocity or rate of enzymatic reaction is assessed by the rate of change in concentration of substrate or product at a given time duration. Various factors which affect the activity of enzymes include:
1. Substrate concentration
2. Enzyme concentration
3. Product concentration
4. Temperature 5. Hydrogen ion concentration (pH)
6. Presence of activators
7. Presence of inhibitor
Effect of substrate Concentration : Reaction velocity of an enzymatic process increases with constant enzyme concentration and increase in substrate concentration.
Effect of enzyme Concentration: As there is optimal substrate concentration, rate of an enzymatic reaction or velocity (V) is directly proportional to the enzyme concentration.
Effect of product concentration In case of a reversible reaction catalyzed by a enzyme, as per the law of mass action the rate of reaction is slowed down with equilibrium. So, rate of reaction is slowed, stopped or even reversed with increase in product concentration
Effect of temperature: Velocity of enzymatic reaction increases with temperature of the medium which they are most efficient and the same is termed as optimum temperature.
Effect of pH: Many enzymes are most efficient in the region of pH 6-7, which is the pH of the cell. Outside this range, enzyme activity drops off very rapidly. Reduction in efficiency caused by changes in the pH is due to changes in the degree of ionization of the substrate and enzyme.
Highly acidic or alkaline conditions bring about a denaturation and subsequent loss of enzymatic activity
Exceptions such as pepsin (with optimum pH 1-2), alkaline phosphatase (with optimum pH 9-10) and acid phosphatase (with optimum pH 4-5)
Presence of activators Presence of certain inorganic ions increases the activity of enzymes. The best examples are chloride ions activated salivary amylase and calcium activated lipases.
Effect of Inhibitors The catalytic enzymatic reaction may be inhibited by substances which prevent the formation of a normal enzyme-substrate complex. The level of inhibition then depends entirely upon the relative concentrations of the true substrate and the inhibitor