NEET MDS Lessons
Biochemistry
CALCIUM
Total calcium in the human body is 1 to 1.5kg, out of which 99% is seen in bone and 1% in extracellular fluid. The main source of calcium is milk.
The daily requirement of calcium for child is 1200mg/day and for adult it is 500mg/day. During pregnancy /lactation the calcium requirement is 1500mg/day.
The absorption of calcium takes place in 1st and 2nd part of deuodenum. Calcium absorption requires carrier protein, helped by Ca2+ - dependent ATpase.
Factors responsible for increase in calcium absorption include Vitamin D, Parathyroid hormone, acidity and amino acids. Factors such as phytic acid,oxalates, malabsorption syndromes and Phosphates decreases calcium absorption. The normal calcium level in blood is 9-11mg/dl.
Classification of Fatty Acids and Triglycerides
Short-chain: 2-4 carbon atoms
Medium-chain: 6-12 carbon atoms
Long-chain: 14-20 carbon atoms
Very long-chain: >20 carbon atoms
• are usually in esterified form as major components of other lipids
A16-carbon fatty acid, with one cis double bond between carbon atoms 9 and 10 may be represented as 16:1 cisD9.

Double bonds in fatty acids usually have the cis configuration. Most naturally occurring fatty acids have an even number of carbon atoms
Examples of fatty acids
|
18:0 |
stearic acid |
|
18:1 cisD9 |
oleic acid |
|
18:2 cisD9,12 |
linoleic acid |
|
18:3 cisD9,12,15 |
linonenic acid |
|
20:4 cisD5,8,11,14 |
arachidonic acid |
There is free rotation about C-C bonds in the fatty acid hydrocarbon, except where there is a double bond. Each cis double bond causes a kink in the chain,
Acids and bases can be classified as proton donors and proton acceptors, respectively. This means that the conjugate base of a given acid will carry a net charge that is more negative than the corresponding acid. In biologically relavent compounds various weak acids and bases are encountered, e.g. the acidic and basic amino acids, nucleotides, phospholipids etc.
Weak acids and bases in solution do not fully dissociate and, therefore, there is an equilibrium between the acid and its conjugate base. This equilibrium can be calculated and is termed the equilibrium constant = Ka. This is also referred to as the dissociation constant as it pertains to the dissociation of protons from acids and bases.
In the reaction of a weak acid:
HA <-----> A- + H+
the equlibrium constant can be calculated from the following equation:
Ka = [H+][A-]/[HA]
As in the case of the ion product:
pKa = -logKa
Therefore, in obtaining the -log of both sides of the equation describing the dissociation of a weak acid we arrive at the following equation:
-logKa = -log[H+][A-]/[HA]
Since as indicated above -logKa = pKa and taking into account the laws of logrithms:
pKa = -log[H+] -log[A-]/[HA]
pKa = pH -log[A-]/[HA]
From this equation it can be seen that the smaller the pKa value the stronger is the acid. This is due to the fact that the stronger an acid the more readily it will give up H+ and, therefore, the value of [HA] in the above equation will be relatively small.
CLASSIFICATION OF ENZYMES
1. Oxidoreductases : Act on many chemical groupings to add or remove hydrogen atoms. e.g. Lactate dehydrogenase
2. Transferases Transfer functional groups between donor and acceptor molecules. Kinases are specialized transferases that regulate metabolism by transferring phosphate from ATP to other molecules. e.g. Aminotransferase.
3. Hydrolases Add water across a bond, hydrolyzing it. E.g. Acetyl choline esterase
4. Lyases Add water, ammonia or carbon dioxide across double bonds, or remove these elements to produce double bonds. e.g. Aldolase.
5. Isomerases Carry out many kinds of isomerization: L to D isomerizations, mutase reactions (shifts of chemical groups) and others. e.g. Triose phosphate isomerase
6. Ligases Catalyze reactions in which two chemical groups are joined (or ligated) with the use of energy from ATP. e.g. Acetyl CoA carboxylase
Niacin: Vitamin B3, Nicotinamide, Nicotinic Acid Niacin, or vitamin B3,
is involved in energy production, normal enzyme function, digestion, promoting normal appetite, healthy skin, and nerves.
RDA Males: 16 mg/day; Females: 14 mg/day
Niacin Deficiency : Pellagra is the disease state that occurs as a result of severe niacin deficiency. Symptoms include cramps, nausea, mental confusion, and skin problems.
Cholesterol synthesis:
Hydroxymethylglutaryl-coenzyme A (HMG-CoA) is the precursor for cholesterol synthesis.
HMG-CoA is also an intermediate on the pathway for synthesis of ketone bodies from acetyl-CoA. The enzymes for ketone body production are located in the mitochondrial matrix. HMG-CoA destined for cholesterol synthesis is made by equivalent, but different, enzymes in the cytosol.
HMG-CoA is formed by condensation of acetyl-CoA and acetoacetyl-CoA, catalyzed by HMG-CoA Synthase.
HMG-CoA Reductase, the rate-determining step on the pathway for synthesis of cholesterol.
Acyl-CoA Synthases (Thiokinases), associated with endoplasmic reticulum membranes and the outer mitochondrial membrane, catalyze activation of long chain fatty acids, esterifying them to coenzyme A, as shown at right. This process is ATP-dependent, and occurs in 2 steps. There are different Acyl-CoA Synthases for fatty acids of different chain lengths.
Exergonic hydrolysis of PPi (P~P), catalyzed by Pyrophosphatase, makes the coupled reaction spontaneous. Overall, two ~P bonds of ATP are cleaved during fatty acid activation. The acyl-coenzyme A product includes one "high energy" thioester linkage.
Summary of fatty acid activation:
- fatty acid + ATP → acyl-adenylate + PPi
PPi → Pi - acyladenylate + HS-CoA → acyl-CoA + AMP
Overall: fatty acid + ATP + HS-CoA → acyl-CoA + AMP + 2 Pi
For most steps of the b-Oxidation Pathway, there are multiple enzymes specific for particular fatty acid chain lengths.
Fatty acid b-oxidation is considered to occur in the mitochondrial matrix. Fatty acids must enter the matrix to be oxidized. However enzymes of the pathway specific for very long chain fatty acids are associated with the inner mitochondrial membrane (facing the matrix).
Fatty acyl-CoA formed outside the mitochondria can pass through the outer mitochondrial membrane, which contains large VDAC channels, but cannot penetrate the mitochondrial inner membrane.
Transfer of the fatty acid moiety across the inner mitochondrial membrane involves carnitine.
Carnitine Palmitoyl Transferases catalyze transfer of a fatty acid between the thiol of Coenzyme A and the hydroxyl on carnitine.
Carnitine-mediated transfer of the fatty acyl moiety into the mitochondrial matrix is a 3-step process, as presented below.
- Carnitine Palmitoyl Transferase I, an enzyme associated with the cytosolic surface of the outer mitochondrial membrane, catalyzes transfer of a fatty acid from ester linkage with the thiol of coenzyme A to the hydroxyl on carnitine.
- Carnitine Acyltransferase, an antiporter in the inner mitochondrial membrane, mediates transmembrane exchange of fatty acyl-carnitine for carnitine.
- Within the mitochondrial matrix (or associated with the matrix surface of the inner mitochondrial membrane, Carnitine Palmitoyl Transferase II catalyzes transfer of the fatty acid from carnitine to coenzyme A. (Carnitine exits the matrix in step 2.) The fatty acid is now esterified to coenzyme A within the mitochondrial matrix
Control of fatty acid oxidation is exerted mainly at the step of fatty acid entry into mitochondria.
Malonyl-CoA inhibits Carnitine Palmitoyl Transferase I. (Malonyl-CoA is also a precursor for fatty acid synthesis). Malonyl-CoA is produced from acetyl-CoA by the enzyme Acetyl-CoA Carboxylase
AMP-Activated Kinase, a sensor of cellular energy levels, catalyzes phosphorylation of Acetyl-CoA Carboxylase under conditions of high AMP (when ATP is low). Phosphorylation inhibits Acetyl-CoA Carboxylase, thereby decreasing malonyl-CoA production.
The decrease in malonyl-CoA concentration releases Carnitine Palmitoyl Transferase I from inhibition. The resulting increase in fatty acid oxidation generates acetyl-CoA for entry into Krebs cycle, with associated production of ATP