NEET MDS Lessons
Biochemistry
VITAMINS
Based on solubility Vitamins are classified as either fat-soluble (lipid soluble) or water-soluble. Vitamins A, D, E and K are fat-soluble
Vitamin C and B is water soluble.
B-COMPLEX VITAMINS
Eight of the water-soluble vitamins are known as the vitamin B-complex group: thiamin (vitamin B1), riboflavin (vitamin B2), niacin (vitamin B3), vitamin B6 (pyridoxine), folate (folic acid), vitamin B12, biotin and pantothenic acid.
LIPIDS
The lipids are a heterogeneous group of compounds, including fats, oils, steroids, waxes, and related compounds, which are related more by their physical than by their chemical properties.
Lipids are non-polar (hydrophobic) compounds, soluble in organic solvents.
Most membrane lipids are amphipathic, having a non-polar end and a polar end
Lipids are important in biological systems because they form the cell membrane, a mechanical barrier that divides a cell from the external environment.
Lipids also provide energy for life and several essential vitamins are lipids.
Lipids can be divided in two major classes, nonsaponifiable lipids and saponifiable lipids.
A nonsaponifiable lipid cannot be broken up into smaller molecules by hydrolysis, which includes triglycerides, waxes, phospholipids, and sphingolipids.
A saponifiable lipid contains one or more ester groups allowing it to undergo hydrolysis in the presence of an acid, base, or enzyme.
Nonsaponifiable lipids include steroids, prostaglandins, and terpenes
Nonpolar lipids, such as triglycerides, are used for energy storage and fuel.
Polar lipids, which can form a barrier with an external water environment, are used in membranes.
Polar lipids include glycerophospholipids and sphingolipids.
Fatty acids are important components of all of these lipids.
Anaerobic organisms lack a respiratory chain. They must reoxidize NADH produced in Glycolysis through some other reaction, because NAD+ is needed for the Glyceraldehyde-3-phosphate Dehydrogenase reaction (see above). Usually NADH is reoxidized as pyruvate is converted to a more reduced compound, that may be excreted.
The complete pathway, including Glycolysis and the re-oxidation of NADH, is called fermentation.
For example, Lactate Dehydrogenase catalyzes reduction of the keto group in pyruvate to a hydroxyl, yielding lactate, as NADH is oxidized to NAD+.
Skeletal muscles ferment glucose to lactate during exercise, when aerobic metabolism cannot keep up with energy needs. Lactate released to the blood may be taken up by other tissues, or by muscle after exercise, and converted via the reversible Lactate Dehydrogenase back to pyruvate
Fermentation Pathway, from glucose to lactate (omitting H+):
glucose + 2 ADP + 2 Pi → 2 lactate + 2 ATP
Anaerobic catabolism of glucose yields only 2 “high energy” bonds of ATP.
Amino Acid Biosynthesis
Glutamate and Aspartate
Glutamate and aspartate are synthesized from their widely distributed a-keto acid precursors by simple 1-step transamination reactions. The former catalyzed by glutamate dehydrogenase and the latter by aspartate aminotransferase, AST. Aspartate is also derived from asparagine through the action of asparaginase. The importance of glutamate as a common intracellular amino donor for transamination reactions and of aspartate as a precursor of ornithine for the urea cycle is described in the Nitrogen Metabolism page.
Alanine and the Glucose-Alanine Cycle
Role in protein synthesis,
Alanine is second only to glutamine in prominence as a circulating amino acid.. When alanine transfer from muscle to liver is coupled with glucose transport from liver back to muscle, the process is known as the glucose-alanine cycle. The key feature of the cycle is that in 1 molecule, alanine, peripheral tissue exports pyruvate and ammonia (which are potentially rate-limiting for metabolism) to the liver, where the carbon skeleton is recycled and most nitrogen eliminated.
There are 2 main pathways to production of muscle alanine: directly from protein degradation, and via the transamination of pyruvate by alanine transaminase, ALT (also referred to as serum glutamate-pyruvate transaminase, SGPT).
glutamate + pyruvate <-------> a-KG + alanine
Cysteine Biosynthesis
The sulfur for cysteine synthesis comes from the essential amino acid methionine. A condensation of ATP and methionine catalyzed by methionine adenosyltransferase yields S-adenosylmethionine
Tyrosine Biosynthesis
Tyrosine is produced in cells by hydroxylating the essential amino acid phenylalanine. This relationship is much like that between cysteine and methionine. Half of the phenylalanine required goes into the production of tyrosine; if the diet is rich in tyrosine itself, the requirements for phenylalanine are reduced by about 50%.
Phenylalanine hydroxylase is a mixed-function oxygenase: one atom of oxygen is incorporated into water and the other into the hydroxyl of tyrosine. The reductant is the tetrahydrofolate-related cofactor tetrahydrobiopterin, which is maintained in the reduced state by the NADH-dependent enzyme dihydropteridine reductase (DHPR).
Ornithine and Proline Biosynthesis
Glutamate is the precursor of both proline and ornithine, with glutamate semialdehyde being a branch point intermediate leading to one or the other of these 2 products. While ornithine is not one of the 20 amino acids used in protein synthesis, it plays a significant role as the acceptor of carbamoyl phosphate in the urea cycle
Serine Biosynthesis
The main pathway to serine starts with the glycolytic intermediate 3-phosphoglycerate. An NADH-linked dehydrogenase converts 3-phosphoglycerate into a keto acid, 3-phosphopyruvate, suitable for subsequent transamination. Aminotransferase activity with glutamate as a donor produces 3-phosphoserine, which is converted to serine by phosphoserine phosphatase.
Glycine Biosynthesis
The main pathway to glycine is a 1-step reaction catalyzed by serine hydroxymethyltransferase. This reaction involves the transfer of the hydroxymethyl group from serine to the cofactor tetrahydrofolate (THF), producing glycine and N5,N10-methylene-THF. Glycine produced from serine or from the diet can also be oxidized by glycine cleavage complex, GCC, to yield a second equivalent of N5,N10-methylene-tetrahydrofolate as well as ammonia and CO2.
Glycine is involved in many anabolic reactions other than protein synthesis including the synthesis of purine nucleotides, heme, glutathione, creatine and serine.
Aspartate/Asparagine and Glutamate/Glutamine Biosynthesis
Glutamate is synthesized by the reductive amination of a-ketoglutarate catalyzed by glutamate dehydrogenase; it is thus a nitrogen-fixing reaction. In addition, glutamate arises by aminotransferase reactions, with the amino nitrogen being donated by a number of different amino acids. Thus, glutamate is a general collector of amino nitrogen.
Aspartate is formed in a transamintion reaction catalyzed by aspartate transaminase, AST. This reaction uses the aspartate a-keto acid analog, oxaloacetate, and glutamate as the amino donor. Aspartate can also be formed by deamination of asparagine catalyzed by asparaginase.
Asparagine synthetase and glutamine synthetase, catalyze the production of asparagine and glutamine from their respective a-amino acids. Glutamine is produced from glutamate by the direct incorporation of ammonia; and this can be considered another nitrogen fixing reaction. Asparagine, however, is formed by an amidotransferase reaction.
Aminotransferase reactions are readily reversible. The direction of any individual transamination depends principally on the concentration ratio of reactants and products. By contrast, transamidation reactions, which are dependent on ATP, are considered irreversible. As a consequence, the degradation of asparagine and glutamine take place by a hydrolytic pathway rather than by a reversal of the pathway by which they were formed. As indicated above, asparagine can be degraded to aspartate
Glycogen Metabolism
The formation of glycogen from glucose is called Glycogenesis
Glycogen is a polymer of glucose residues linked mainly by a(1→ 4) glycosidic linkages. There are a(1→6) linkages at branch points. The chains and branches are longer than shown. Glucose is stored as glycogen predominantly in liver and muscle cells
Glycogen Synthesis
Uridine diphosphate glucose (UDP-glucose) is the immediate precursor for glycogen synthesis. As glucose residues are added to glycogen, UDP-glucose is the substrate and UDP is released as a reaction product. Nucleotide diphosphate sugars are precursors also for synthesis of other complex carbohydrates, including oligosaccharide chains of glycoproteins, etc.
UDP-glucose is formed from glucose-1-phosphate and uridine triphosphate (UTP)
glucose-1-phosphate + UTP → UDP-glucose + 2 Pi
Cleavage of PPi is the only energy cost for glycogen synthesis (1P bond per glucose residue)
Glycogenin initiates glycogen synthesis. Glycogenin is an enzyme that catalyzes glycosylation of one of its own tyrosine residues.
Physiological regulation of glycogen metabolism
Both synthesis and breakdown of glycogen are spontaneous. If glycogen synthesis and phosphorolysis were active simultaneously in a cell, there would be a futile cycle with cleavage of 1 P bond per cycle
To prevent such a futile cycle, Glycogen Synthase and Glycogen Phosphorylase are reciprocally regulated, both by allosteric effectors and by covalent modification (phosphorylation)
Glycogen catabolism (breakdown)
Glycogen Phosphorylase catalyzes phosphorolytic cleavage of the →(1→4) glycosidic linkages of glycogen, releasing glucose-1-phosphate as the reaction product.
Glycogen (n residues) + Pi → glycogen (n-1 residues) + glucose-1-phosphate
The Major product of glycogen breakdown is glucose -1-phosphate
Fate of glucose-1-phosphate in relation to other pathways:
Phosphoglucomutase catalyzes the reversible reaction:
Glucose-1-phosphate → Glucose-6-phosphate
Biotin
Biotin helps release energy from carbohydrates and aids in the metabolism of fats, proteins and carbohydrates from food.
RDA The Adequate Intake (AI) for Biotin is 30 mcg/day for adult males and females
Biotin Deficiency Biotin deficiency is uncommon under normal circumstances, but symptoms include fatigue, loss of appetite, nausea, vomiting, depression, muscle pains, heart abnormalities and anemia.
- There are two important phospholipids, Phosphatidylcholine and Phosphatidylserine found the cell membrane without which cell cannot function normally.
- Phospholipids are also important for optimal brain health as they found the cell membrane of brain cells also which help them to communicate and influence the receptors function. That is the reason food stuff which is rich in phospholipids like soy, eggs and the brain tissue of animals are good for healthy and smart brain.
- Phospholipids are the main component of cell membrane or plasma membrane. The bilayer of phospholipid molecules determine the transition of minerals, nutrients, and drugs in and out of the cell and affect various functions of them.
- As phospholipids are main component of all cell membrane, they influence a number of organs and tissues, such as the heart, blood cells and the immune system. As we grown up the amount of phospholipids decreases and reaches to decline.
- Phospholipids present in cell membrane provide cell permeability and flexibility with various substances as well its ability to move fluently. The arrangement of phospholipid molecules in lipid bilayer prevent amino acids, carbohydrates, nucleic acids, and proteins from moving across the membrane by diffusion. The lipid bi-layer is usually help to prevent adjacent molecules from sticking to each other.
- The selectivity of cell membrane form certain substances are due to the presence of hydrophobic and hydrophilic part molecules and their arrangement in bilayer. This bilayer is also maintained the normal pH of cell to keeps it functioning properly.
- Phospholipids are also useful in the treatment of memory problem associated with chronic substances as they improve the ability of organism to adapt the chronic stress.