Talk to us?

Biochemistry - NEETMDS- courses
NEET MDS Lessons
Biochemistry

BIOLOGICAL ROLES OF LIPID

Lipids have the common property of being relatively insoluble in water and soluble in nonpolar solvents such as ether and chloroform. They are important dietary constituents not only because of their high energy value but also because of the fat-soluble vitamins and the essential fatty acids contained in the fat of natural foods

Nonpolar lipids act as electrical insulators, allowing rapid propagation of depolarization waves along myelinated nerves

Combinations of lipid and protein (lipoproteins) are important cellular constituents, occurring both in the cell membrane and in the mitochondria, and serving also as the means of transporting lipids in the blood.

ZINC

The enzyme RNA polymerase, which is required for transcription, contains zinc and it is essential for protein bio synthesis.

Deficiency in Zinc leads to poor wound healing, lesions of skin impaired spermatogenesis, hyperkeratosis, dermatitis and alopecia

FATTY  ACIDS

Fatty acids consist of a hydrocarbon chain with a carboxylic acid at one end.

• are usually in esterified form as major components of other lipids

• are often complexed in triacylglycerols (TAGs)

• most have an even number of carbon atoms (usually 14 to 24)

• are synthesized by concatenation of C2 units.

• C16 & C18 FAs are the most common FAs in higher plants and animals

• Are either:

—saturated (all C-C bonds are single bonds) or

—unsaturated (with one or more double bonds in the chain)

—monounsaturated (a single double bond)

1.Example of monounsaturated FA: Oleic acid 18:1(9) (the number in unsaturated FA parentheses indicates that the double bond is between carbons 9 & 10)

2. Double bonds are almost all in the cis conformation

 

—polyunsaturated (more then one double bond)

Polyunsaturated fatty acids contain 2 or more double bonds. They usually occur at every third carbon atom towards the methyl terminus (-CH3 ) of the molecule. Example of polyunsaturated FA: Linoleic acid 18:2(9,12)

• the number of double bonds in FAs varies from 1 to 4 (usually), but in most bacteria it is rarely more than 1

Saturated FAs are highly flexible molecules that can assume a wide range of conformations because there is relatively free rotation about their C-C bonds.

Enzyme Kinetics

Enzymes are protein catalysts that, like all catalysts, speed up the rate of a chemical reaction without being used up in the process. They achieve their effect by temporarily binding to the substrate and, in doing so, lowering the activation energy needed to convert it to a product.

The rate at which an enzyme works is influenced by several factors, e.g.,

  • the concentration of substrate molecules (the more of them available, the quicker the enzyme molecules collide and bind with them). The concentration of substrate is designated [S] and is expressed in unit of molarity.
  • the temperature. As the temperature rises, molecular motion - and hence collisions between enzyme and substrate - speed up. But as enzymes are proteins, there is an upper limit beyond which the enzyme becomes denatured and ineffective.
  • the presence of inhibitors.
    • competitive inhibitors are molecules that bind to the same site as the substrate - preventing the substrate from binding as they do so - but are not changed by the enzyme.
    • noncompetitive inhibitors are molecules that bind to some other site on the enzyme reducing its catalytic power.
  • pH. The conformation of a protein is influenced by pH and as enzyme activity is crucially dependent on its conformation, its activity is likewise affected.

The study of the rate at which an enzyme works is called enzyme kinetics.

MAGNESIUM

The normal serum level of Magnesium is 1.8 to 2.2. mg/dl.

Functions of Magnesium

(a) Irritability of neuromuscular tissues is lowered by Magnesium

(b) Magnesium deficiency leads to decrease in Insulin dependent uptake of glucose

(c) Magnesium supplementation improves glucose tolerance

Causes such as liver cirrhosis, protein calorie malnutrition and hypo para thyroidism leads to hypomagnesemia

The main causes of hypermagnesemia includes renal failure, hyper para thyroidism, rickets, oxalate poisoning and multiple myeloma.

FAT-SOLUBLE VITAMINS

The fat-soluble vitamins, A, D, E, and K, are stored in the body for long periods of time and generally pose a greater risk for toxicity when consumed in excess than water-soluble vitamins.

VITAMIN A: RETINOL

 Vitamin A, also called retinol, has many functions in the body. In addition to helping the eyes adjust to light changes, vitamin A plays an important role in bone growth, tooth development, reproduction, cell division, gene expression, and regulation of the immune system.

The skin, eyes, and mucous membranes of the mouth, nose, throat and lungs depend on vitamin A to remain moist. Vitamin A is also an important antioxidant that may play a role in the prevention of certain cancers.

One RAE equals 1 mcg of retinol or 12 mcg of beta-carotene. The Recommended Dietary Allowance (RDA) for vitamin A is 900 mcg/ day for adult males and 700 mcg/ day for adult females.

Vitamin A Deficiency

Vitamin A deficiency is rare, but the disease that results is known as xerophthalmia.

Other signs of possible vitamin A deficiency include decreased resistance to infections, faulty tooth development, and slower bone growth.

Vitamin A toxicity The Tolerable Upper Intake Level (UL) for adults is 3,000 mcg RAE.

VITAMIN D

Vitamin D plays a critical role in the body’s use of calcium and phosphorous. It works by increasing the amount of calcium absorbed from the small intestine, helping to form and maintain bones.

Vitamin D benefits the body by playing a role in immunity and controlling cell growth. Children especially need adequate amounts of vitamin D to develop strong bones and healthy teeth.

RDA  From 12 months to age fifty, the RDA is set at 15 mcg.

20 mcg of cholecalciferol equals 800 International Units (IU), which is the recommendation for maintenance of healthy bone for adults over fifty.

Vitamin D Deficiency

Symptoms of vitamin D deficiency in growing children include rickets (long, soft bowed legs) and flattening of the back of the skull. Vitamin D deficiency in adults may result in osteomalacia (muscle and bone weakness), and osteoporosis (loss of bone mass).

Vitamin D toxicity

The Tolerable Upper Intake Level (UL) for vitamin D is set at 100 mcg for people 9 years of age and older. High doses of vitamin D supplements coupled with large amounts of fortified foods may cause accumulations in the liver and produce signs of poisoning.

VITAMIN E: TOCOPHEROL

Vitamin E benefits the body by acting as an antioxidant, and protecting vitamins A and C, red blood cells, and essential fatty acids from destruction.

RDA  One milligram of alpha-tocopherol equals to 1.5 International Units (IU). RDA guidelines state that males and females over the age of 14 should receive 15 mcg of alpha-tocopherol per day.

Vitamin E Deficiency Vitamin E deficiency is rare. Cases of vitamin E deficiency usually only occur in premature infants and in those unable to absorb fats.

 

VITAMIN K

Vitamin K is naturally produced by the bacteria in the intestines, and plays an essential role in normal blood clotting, promoting bone health, and helping to produce proteins for blood, bones, and kidneys.

RDA

Males and females age 14 - 18: 75 mcg/day; Males and females age 19 and older: 90 mcg/day

Vitamin K Deficiency

Hemorrhage can occur due to sufficient amounts of vitamin K.

Vitamin K deficiency may appear in infants or in people who take anticoagulants, such as Coumadin (warfarin), or antibiotic drugs.

Newborn babies lack the intestinal bacteria to produce vitamin K and need a supplement for the first week.

Glycolysis enzymes are located in the cytosol of cells.  Pyruvate enters the mitochondrion to be metabolized further

Mitochondrial compartments: The mitochondrial matrix contains Pyruvate Dehydrogenase and enzymes of Krebs Cycle, plus other pathways such as fatty acid oxidation. 

Pyruvate Dehydrogenase catalyzes oxidative decarboxylation of pyruvate, to form acetyl-CoA

FAD (Flavin Adenine Dinucleotide) is a derivative of the B-vitamin riboflavin (dimethylisoalloxazine-ribitol). The flavin ring system undergoes oxidation/reduction as shown below. Whereas NAD+ is a coenzyme that reversibly binds to enzymes, FAD is a prosthetic group, that is permanently part of the complex. 

FAD accepts and donates 2 electrons with 2 protons (2 H):

Thiamine pyrophosphate (TPP) is a derivative of  thiamine (vitamin B1). Nutritional deficiency of thiamine leads to the disease beriberi. Beriberi affects especially the brain, because TPP is required for carbohydrate metabolism, and the brain depends on glucose metabolism for energy

Acetyl CoA, a product of the Pyruvate Dehydrogenase reaction, is a central compound in metabolism. The "high energy" thioester linkage makes it an excellent donor of the acetate moiety

For example, acetyl CoA functions as:

  • input to the Krebs Cycle, where the acetate moiety is further degraded to CO2.
  • donor of acetate for synthesis of fatty acids, ketone bodies, and cholesterol.

 

ATPs  formed in TCA cycle from one molecule of Pyruvate

1. 3ATP            7. 3ATP          5. 3 ATP                     

 8. 1 ATP         9. 2 ATP          11.3 ATP         Total =15 ATP.

 

 ATPS formed from one molecule of Acetyl CoA =12ATP

 

ATPs formed from one molecule of glucose after complete oxidation

One molecule of glucose -->2 molecules of pyruvate

['By glycolysis] ->8 ATP

2 molecules of pyruvate [By TCA cycle] -> 30 ATP

Total = 38 ATP

Explore by Exams