Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Biochemistry

Enzymes are protein catalyst produced by a cell and responsible ‘for the high rate’ and specificity of one or more intracellular or extracellular biochemical reactions.

Enzymes are biological catalysts responsible for supporting almost all of the chemical reactions that maintain animal homeostasis. Enzyme reactions are always reversible.

The substance, upon which an enzyme acts, is called as substrate. Enzymes are involved in conversion of substrate into product.

Almost all enzymes are globular proteins consisting either of a single polypeptide or of two or more polypeptides held together (in quaternary structure) by non-covalent bonds. Enzymes do nothing but speed up the rates at which the equilibrium positions of reversible reactions are attained.

 In terms of thermodynamics, enzymes reduce the activation energies of reactions, enabling them to occur much more readily at low temperatures - essential for biological systems.

Growth hormone

Growth hormone (GH or HGH), also known as somatotropin or somatropin, is a peptide hormone that stimulates growth, cell reproduction and regeneration in humans.

Growth hormone is a single-chain polypeptide that is synthesized, stored, and secreted by somatotropic cells within the lateral wings of the anterior pituitary gland.

Regulation of growth hormone secretion

Secretion of growth hormone (GH) in the pituitary is regulated by the neurosecretory nuclei of the hypothalamus. These cells release the peptides Growth hormone-releasing hormone (GHRH or somatocrinin) and Growth hormone-inhibiting hormone (GHIH or somatostatin) into the hypophyseal portal venous blood surrounding the pituitary.

GH release in the pituitary is primarily determined by the balance of these two peptides, which in turn is affected by many physiological stimulators (e.g., exercise, nutrition, sleep) and inhibitors (e.g., free fatty acids) of GH secretion.

Regulation

Stimulators of growth hormone (GH) secretion include peptide hormones, ghrelin, sex hormones, hypoglycemia, deep sleep, niacin, fasting, and vigorous exercise.

Inhibitors of GH secretion include somatostatin, circulating concentrations of GH and IGF-1 (negative feedback on the pituitary and hypothalamus), hyperglycemia, glucocorticoids, and dihydrotestosterone.

Clinical significance

The most common disease of GH excess is a pituitary tumor composed of somatotroph cells of the anterior pituitary. These somatotroph adenomas are benign and grow slowly, gradually producing more and more GH excess. The adenoma may become large enough to cause headaches, impair vision by pressure on the optic nerves, or cause deficiency of other pituitary hormones by displacement.

Sphingosine is an amino alcohol present in sphingomyelins (sphingophospholipids).  They do not contain glycerol at all.

Sphingosine is attached by an amide linkage to a fatty acid to produce ceramide. The alcohol group of sphingosine is bound to phosphorylcholine in sphingomyelin structure. .

Sphingomyelins are important constituents of myelin and are found in good quantity in brain and nervous tissues.

General structure of amino acids

  • All organisms use same 20 amino acids.
  • Variation in order of amino acids in polypeptides allow limitless variation.
  • All amino acids made up of a chiral carbon attached to 4 different groups      

 - hydrogen
 - amino group
 - carboxyl
 - R group: varies between different amino acids

  • Two stereoisomers (mirror images of one another) can exist for each amino acid. Such stereoisomers are called enantiomers. All amino acids found in proteins are in the L configuration.
  • Amino acids are zwitterions at physiological pH 7.4. ( i.e. dipolar ions). Some side chains can also be ionized

Structures of the 20 common amino acids

  • Side chains of the 20 amino acids vary. Properties of side chains greatly influence overall conformation of protein. E.g. hydrophobic side chains in water-soluble proteins fold into interior of protein
  • Some side chains are nonpolar (hydrophobic), others are polar or ionizable at physiological pH (hydrophilic).
  • Side chains fall into several chemical classes: aliphatic, aromatic, sulfur-containing, alcohols, bases, acids, and amides. Also catagorized as to hydrophobic vs hydrophilic.
  • Must know 3-letter code for each amino acid.

Aliphatic R Groups

  • Glycine: least complex structure. Not chiral. Side chain small enough to fit into niches too small for other amino acids.
  • Alanine, Valine, Leucine, Isoleucine
    • no reactive functional groups      
    • highly hydrophobic: play important role in maintaining 3-D structures of proteins because of their tendency to cluster away from water
  • Proline has cyclic side chain called a pyrolidine ring. Restricts geometry of polypeptides, sometimes introducing abrupt changes in direction of polypeptide chain.

Aromatic R Groups

  • Phenylalanine, Tyrosine, Tryptophan
    • Phe has benzene ring therefore hydrophobic.  
    • Tyr and Trp have side chains with polar groups, therefore less hydrophobic than Phe.
    • Absorb UV  280 nm. Therefore used to estimate concentration of proteins.

Sulfur-containing R Groups

  • Methionine and Cysteine)
    • Met is hydrophobic. Sulfur atom is nucleophilic.
    • Cys somewhat hydrophobic. Highly reactive. Form disulfide bridges and may stabilize 3-D structure of proteins by cross-linking Cys residues in peptide chains.

Side Chains with Alcohol Groups

  • Serine and Threonine
    • have uncharged polar side chains. Alcohol groups give hydrophilic character.
    • weakly ionizable.

Basic R Groups

  • Histidine, Lysine, and Arginine.
    • have hydrophilic side chains that are nitrogenous bases and positively charged at physiological pH.
    • Arg is most basic a.a., and contribute positive charges to proteins.

Acidic R Groups and their Amide derivatives

  • Aspartate, Glutamate
    • are dicarboxylic acids, ionizable at physiological pH. Confer a negative charge on proteins.
  • Asparagine, Glutamine
    • amides of Asp and Glu rspectively
    • highly polar and often found on surface of proteins
    • polar amide groups can form H-bonds with atoms in other amino acids with polar side chains.

Insulin

Insulin is a polypeptide hormone synthesized in the pancreas by β-cells, which construct a single chain molecule called proinsulin. 

Insulin, secreted by the β-cells of the pancreas in response to rising blood glucose levels, is a signal that glucose is abundant.

Insulin binds to a specific receptor on the cell surface and exerts its metabolic effect by a signaling pathway that involves a receptor tyrosine kinase phosphorylation cascade.

The pancreas secretes insulin or glucagon in response to changes in blood glucose.

Each cell type of the islets produces a single hormone: α-cells produce glucagon; β-cells, insulin; and δ-cells, somatostatin.

Insulin secretion

When blood glucose rises, GLUT2 transporters carry glucose into the b-cells, where it is immediately converted to glucose 6-phosphate by hexokinase IV (glucokinase) and enters glycolysis. The increased rate of glucose catabolism raises [ATP], causing the closing of ATP-gated K+ channels in the plasma membrane. Reduced efflux of K+ depolarizes the membrane, thereby opening voltage-sensitive Ca2+ channels in the plasma membrane. The resulting influx of Ca2+ triggers the release of insulin by exocytosis.

Insulin lowers blood glucose by stimulating glucose uptake by the tissues; the reduced blood glucose is detected by the β-cell as a diminished flux through the hexokinase reaction; this slows or stops the release of insulin. This feedback regulation holds blood glucose concentration nearly constant despite large fluctuations in dietary intake.

 

Insulin counters high blood glucose

Insulin stimulates glucose uptake by muscle and adipose tissue, where the glucose is converted to glucose 6-phosphate. In the liver, insulin also activates glycogen synthase and inactivates glycogen phosphorylase, so that much of the glucose 6-phosphate is channelled into glycogen.

Diabetes mellitus, caused by a deficiency in the secretion or action of insulin, is a relatively common disease. There are two major clinical classes of diabetes mellitus: type I diabetes, or insulin-dependent diabetes mellitus (IDDM), and type II diabetes, or non-insulin-dependent diabetes mellitus (NIDDM), also called insulin-resistant diabetes. In type I diabetes, the disease begins early in life and quickly becomes severe. IDDM requires insulin therapy and careful, lifelong control of the balance between dietary intake and insulin dose.

Characteristic symptoms of type I (and type II) diabetes are excessive thirst and frequent urination (polyuria), leading to the intake of large volumes of water (polydipsia)

Type II diabetes is slow to develop (typically in older, obese individuals), and the symptoms are milder.

Pentose Phosphate Pathway (Hexose Monophosphate Shunt)

The pentose phosphate pathway is primarily an anabolic pathway that utilizes the 6 carbons of glucose to generate 5 carbon sugars and reducing equivalents. However, this pathway does oxidize glucose and under certain conditions can completely oxidize glucose to CO2 and water. The primary functions of this pathway are:

  • To generate reducing equivalents, in the form of NADPH, for reductive biosynthesis reactions within cells.
  • To provide the cell with ribose-5-phosphate (R5P) for the synthesis of the nucleotides and nucleic acids.
  • Although not a significant function of the PPP, it can operate to metabolize dietary pentose sugars derived from the digestion of nucleic acids as well as to rearrange the carbon skeletons of dietary carbohydrates into glycolytic/gluconeogenic intermediates

Enzymes that function primarily in the reductive direction utilize the NADP+/NADPH cofactor pair as co-factors as opposed to oxidative enzymes that utilize the NAD+/NADH cofactor pair. The reactions of fatty acid biosynthesis and steroid biosynthesis utilize large amounts of NADPH. As a consequence, cells of the liver, adipose tissue, adrenal cortex, testis and lactating mammary gland have high levels of the PPP enzymes. In fact 30% of the oxidation of glucose in the liver occurs via the PPP. Additionally, erythrocytes utilize the reactions of the PPP to generate large amounts of NADPH used in the reduction of glutathione. The conversion of ribonucleotides to deoxyribonucleotides (through the action of ribonucleotide reductase) requires NADPH as the electron source, therefore, any rapidly proliferating cell needs large quantities of NADPH.

Regulation: Glucose-6-phosphate Dehydrogenase is the committed step of the Pentose Phosphate Pathway. This enzyme is regulated by availability of the substrate NADP+. As NADPH is utilized in reductive synthetic pathways, the increasing concentration of NADP+ stimulates the Pentose Phosphate Pathway, to replenish NADPH

Thiamin: Vitamin B1

Thiamin, or vitamin B1, helps to release energy from foods, promotes normal appetite, and is important in maintaining proper nervous system function.

RDA (Required Daily allowance) Males: 1.2 mg/day; Females: 1.1 mg/day

Thiamin Deficiency

Symptoms of thiamin deficiency include: mental confusion, muscle weakness, wasting, water retention (edema), impaired growth, and the disease known as beriberi.

Explore by Exams