NEET MDS Lessons
Biochemistry
FAT-SOLUBLE VITAMINS
The fat-soluble vitamins, A, D, E, and K, are stored in the body for long periods of time and generally pose a greater risk for toxicity when consumed in excess than water-soluble vitamins.
VITAMIN A: RETINOL
Vitamin A, also called retinol, has many functions in the body. In addition to helping the eyes adjust to light changes, vitamin A plays an important role in bone growth, tooth development, reproduction, cell division, gene expression, and regulation of the immune system.
The skin, eyes, and mucous membranes of the mouth, nose, throat and lungs depend on vitamin A to remain moist. Vitamin A is also an important antioxidant that may play a role in the prevention of certain cancers.
One RAE equals 1 mcg of retinol or 12 mcg of beta-carotene. The Recommended Dietary Allowance (RDA) for vitamin A is 900 mcg/ day for adult males and 700 mcg/ day for adult females.
Vitamin A Deficiency
Vitamin A deficiency is rare, but the disease that results is known as xerophthalmia.
Other signs of possible vitamin A deficiency include decreased resistance to infections, faulty tooth development, and slower bone growth.
Vitamin A toxicity The Tolerable Upper Intake Level (UL) for adults is 3,000 mcg RAE.
VITAMIN D
Vitamin D plays a critical role in the body’s use of calcium and phosphorous. It works by increasing the amount of calcium absorbed from the small intestine, helping to form and maintain bones.
Vitamin D benefits the body by playing a role in immunity and controlling cell growth. Children especially need adequate amounts of vitamin D to develop strong bones and healthy teeth.
RDA From 12 months to age fifty, the RDA is set at 15 mcg.
20 mcg of cholecalciferol equals 800 International Units (IU), which is the recommendation for maintenance of healthy bone for adults over fifty.
Vitamin D Deficiency
Symptoms of vitamin D deficiency in growing children include rickets (long, soft bowed legs) and flattening of the back of the skull. Vitamin D deficiency in adults may result in osteomalacia (muscle and bone weakness), and osteoporosis (loss of bone mass).
Vitamin D toxicity
The Tolerable Upper Intake Level (UL) for vitamin D is set at 100 mcg for people 9 years of age and older. High doses of vitamin D supplements coupled with large amounts of fortified foods may cause accumulations in the liver and produce signs of poisoning.
VITAMIN E: TOCOPHEROL
Vitamin E benefits the body by acting as an antioxidant, and protecting vitamins A and C, red blood cells, and essential fatty acids from destruction.
RDA One milligram of alpha-tocopherol equals to 1.5 International Units (IU). RDA guidelines state that males and females over the age of 14 should receive 15 mcg of alpha-tocopherol per day.
Vitamin E Deficiency Vitamin E deficiency is rare. Cases of vitamin E deficiency usually only occur in premature infants and in those unable to absorb fats.
VITAMIN K
Vitamin K is naturally produced by the bacteria in the intestines, and plays an essential role in normal blood clotting, promoting bone health, and helping to produce proteins for blood, bones, and kidneys.
RDA
Males and females age 14 - 18: 75 mcg/day; Males and females age 19 and older: 90 mcg/day
Vitamin K Deficiency
Hemorrhage can occur due to sufficient amounts of vitamin K.
Vitamin K deficiency may appear in infants or in people who take anticoagulants, such as Coumadin (warfarin), or antibiotic drugs.
Newborn babies lack the intestinal bacteria to produce vitamin K and need a supplement for the first week.
Gluconeogenesis
It is the process by which Glucose or glycogen is formed from non carbohydrate substances.
Gluconeogenesis occurs mainly in liver.
Gluconeogenesis inputs:
The source of pyruvate and oxaloacetate for gluconeogenesis during fasting or carbohydrate starvation is mainly amino acid catabolism. Some amino acids are catabolized to pyruvate, oxaloacetate, Muscle proteins may break down to supply amino acids. These are transported to liver where they are deaminated and converted to gluconeogenesis inputs.
Glycerol, derived from hydrolysis of triacylglycerols in fat cells, is also a significant input to gluconeogenesis
Glycolysis & Gluconeogenesis pathways are both spontaneous If both pathways were simultaneously active within a cell it would constitute a "futile cycle" that would waste energy
Glycolysis yields 2~P bonds of ATP.
Gluconeogenesis expends 6~P bonds of ATP and GTP.
A futile cycle consisting of both pathways would waste 4 P.bonds per cycle.To prevent this waste, Glycolysis and Gluconeogenesis pathways are reciprocally regulated.
3-D Structure of proteins
Proteins are the main players in the life of a cell. Each protein is a unique sequence of amino acid residues, each of which folds into a unique, stable, three dimentional structure that is biologically functional.
Conformation = spatial arrangement of atoms that depends on rotation of bonds. Can change without breaking covalent bonds.
- Since each residue has a number of possible conformations, and there are many residues in a protein, the number of possible conformations for a protein is enormous.
Native conformation = single, stable shape a protein assumes under physiological conditions.
- In native conformation, rotation around covalent bonds in polypeptide is constrained by a number of factors ( H-bonding, weak interactions, steric interference)
- Biological function of proteins depends completely on its conformation. In biology, shape is everything.
- Proteins can be classified as globular or fibrous.
There are 4 levels of protein structure
- Primary structure
- linear sequence of amino acids
- held by covalent forces
- primary structure determines all oversall shape of folded polypeptides (i.e primary structure determines secondary , tertiary, and quaternary structures)
- Secondary structure
- regions of regularly repeating conformations of the peptide chain (α helices, β sheets)
- maintained by H-bonds between amide hydrogens and carbonyl oxygens of peptide backbone.
- Tertiary structure
- completely folded and compacted polypeptide chain.
- stabilized by interactions of sidechains of non-neighboring amino acid residues (fibrous proteins lack tertiary structure)
- Quaternary structure
- association of two or more polypeptide chains into a multisubunit protein.
CHOLESTEROL AND ITS IMPORTANCE
Cholesterol is an important lipid found in the cell membrane. It is a sterol, which means that cholesterol is a combination of a steroid and an alcohol .
It is an important component of cell membranes and is also the basis for the synthesis of other steroids, including the sex hormones estradiol and testosterone, as well as other steroids such as cortisone and vitamin D.
In the cell membrane, the steroid ring structure of cholesterol provides a rigid hydrophobic structure that helps boost the rigidity of the cell membrane.
Without cholesterol the cell membrane would be too fluid. In the human body, cholesterol is synthesized in the liver.
Cholesterol is insoluble in the blood, so when it is released into the blood stream it forms complexes with lipoproteins.
Cholesterol can bind to two types of lipoprotein, called high-density lipoprotein (HDL) and low-density lipoprotein (LDL).
A lipoprotein is a spherical molecule with water soluble proteins on the exterior. Therefore, when cholesterol is bound to a lipoprotein, it becomes blood soluble and can be transported throughout the body.
HDL cholesterol is transported back to the liver. If HDL levels are low, then the blood level of cholesterol will increase.
High levels of blood cholesterol are associated with plaque formation in the arteries, which can lead to heart disease and stroke.
ESSENTIAL FATTY ACIDS (EFAs) Polyunsaturated FAs,such as Linoleic acid and g(gamma)- Linolenic acid, are ESSENTIAL FATTY ACIDS — we cannot make them, and we need them, so we must get them in our diets mostly from plant sources.
Acyl-CoA Synthases (Thiokinases), associated with endoplasmic reticulum membranes and the outer mitochondrial membrane, catalyze activation of long chain fatty acids, esterifying them to coenzyme A, as shown at right. This process is ATP-dependent, and occurs in 2 steps. There are different Acyl-CoA Synthases for fatty acids of different chain lengths.
Exergonic hydrolysis of PPi (P~P), catalyzed by Pyrophosphatase, makes the coupled reaction spontaneous. Overall, two ~P bonds of ATP are cleaved during fatty acid activation. The acyl-coenzyme A product includes one "high energy" thioester linkage.
Summary of fatty acid activation:
- fatty acid + ATP → acyl-adenylate + PPi
PPi → Pi - acyladenylate + HS-CoA → acyl-CoA + AMP
Overall: fatty acid + ATP + HS-CoA → acyl-CoA + AMP + 2 Pi
For most steps of the b-Oxidation Pathway, there are multiple enzymes specific for particular fatty acid chain lengths.
Fatty acid b-oxidation is considered to occur in the mitochondrial matrix. Fatty acids must enter the matrix to be oxidized. However enzymes of the pathway specific for very long chain fatty acids are associated with the inner mitochondrial membrane (facing the matrix).
Fatty acyl-CoA formed outside the mitochondria can pass through the outer mitochondrial membrane, which contains large VDAC channels, but cannot penetrate the mitochondrial inner membrane.
Transfer of the fatty acid moiety across the inner mitochondrial membrane involves carnitine.
Carnitine Palmitoyl Transferases catalyze transfer of a fatty acid between the thiol of Coenzyme A and the hydroxyl on carnitine.
Carnitine-mediated transfer of the fatty acyl moiety into the mitochondrial matrix is a 3-step process, as presented below.
- Carnitine Palmitoyl Transferase I, an enzyme associated with the cytosolic surface of the outer mitochondrial membrane, catalyzes transfer of a fatty acid from ester linkage with the thiol of coenzyme A to the hydroxyl on carnitine.
- Carnitine Acyltransferase, an antiporter in the inner mitochondrial membrane, mediates transmembrane exchange of fatty acyl-carnitine for carnitine.
- Within the mitochondrial matrix (or associated with the matrix surface of the inner mitochondrial membrane, Carnitine Palmitoyl Transferase II catalyzes transfer of the fatty acid from carnitine to coenzyme A. (Carnitine exits the matrix in step 2.) The fatty acid is now esterified to coenzyme A within the mitochondrial matrix
Control of fatty acid oxidation is exerted mainly at the step of fatty acid entry into mitochondria.
Malonyl-CoA inhibits Carnitine Palmitoyl Transferase I. (Malonyl-CoA is also a precursor for fatty acid synthesis). Malonyl-CoA is produced from acetyl-CoA by the enzyme Acetyl-CoA Carboxylase
AMP-Activated Kinase, a sensor of cellular energy levels, catalyzes phosphorylation of Acetyl-CoA Carboxylase under conditions of high AMP (when ATP is low). Phosphorylation inhibits Acetyl-CoA Carboxylase, thereby decreasing malonyl-CoA production.
The decrease in malonyl-CoA concentration releases Carnitine Palmitoyl Transferase I from inhibition. The resulting increase in fatty acid oxidation generates acetyl-CoA for entry into Krebs cycle, with associated production of ATP
The Effects of Enzyme Inhibitors
Enzymes can be inhibited
- competitively, when the substrate and inhibitor compete for binding to the same active site or
- noncompetitively, when the inhibitor binds somewhere else on the enzyme molecule reducing its efficiency.
The distinction can be determined by plotting enzyme activity with and without the inhibitor present.
Competitive Inhibition
In the presence of a competitive inhibitor, it takes a higher substrate concentration to achieve the same velocities that were reached in its absence. So while Vmax can still be reached if sufficient substrate is available, one-half Vmax requires a higher [S] than before and thus Km is larger.
Noncompetitive Inhibition
With noncompetitive inhibition, enzyme molecules that have been bound by the inhibitor are taken out
- enzyme rate (velocity) is reduced for all values of [S], including
- Vmax and one-half Vmax but
- Km remains unchanged because the active site of those enzyme molecules that have not been inhibited is unchanged.