NEET MDS Lessons
Biochemistry
Role of Coenzymes
The functional role of coenzymes is to act as transporters of chemical groups from one reactant to another.
Ex. The hydride ion (H+ + 2e-) carried by NAD or the mole of hydrogen carried by FAD;
The amine (-NH2) carried by pyridoxal phosphate
The Protein Buffer Systems
The protein buffers are very important in the plasma and the intracellular fluids but their concentration is very low in cerebrospinal fluid, lymph and interstitial fluids.
The proteins exist as anions serving as conjugate bases (Pr − ) at the blood pH 7.4 and form conjugate acids (HPr) accepting H+ . They have the capacity to buffer some H2CO3 in the blood.
ESSENTIAL FATTY ACIDS (EFAs) Polyunsaturated FAs,such as Linoleic acid and g(gamma)- Linolenic acid, are ESSENTIAL FATTY ACIDS — we cannot make them, and we need them, so we must get them in our diets mostly from plant sources.
By rearranging the above equation we arrive at the Henderson-Hasselbalch equation:
pH = pKa + log[A-]/[HA]
It should be obvious now that the pH of a solution of any acid (for which the equilibrium constant is known, and there are numerous tables with this information) can be calculated knowing the concentration of the acid, HA, and its conjugate base [A-].
At the point of the dissociation where the concentration of the conjugate base [A-] = to that of the acid [HA]:
pH = pKa + log[1]
The log of 1 = 0. Thus, at the mid-point of a titration of a weak acid:
pKa = pH
In other words, the term pKa is that pH at which an equivalent distribution of acid and conjugate base (or base and conjugate acid) exists in solution.
CLINICAL SIGNIFICANCE OF ENZYMES
The measurement of enzymes level in serum is applied in diagnostic application
Pancreatic Enzymes
Acute pancreatitis is an inflammatory process where auto digestion of gland was noticed with activation of the certain pancreatic enzymes. Enzymes which involves in pancreatic destruction includes α-amylase, lipase etc.,
1. α-amylase (AMYs) are calcium dependent hydrolyase class of metaloenzyme that catalyzes the hydrolysis of 1, 4- α-glycosidic linkages in polysaccharides. The normal values of amylase is in range of 28-100 U/L. Marked increase of 5 to 10 times the upper reference limit (URL) in AMYs activity indicates acute pancreatitis and severe glomerular impairment.
2. Lipase is single chain glycoprotein. Bile salts and a cofactor called colipase are required for full catalytic activity of lipase. Colipase is secreted by pancreas. Increase in plasma lipase activity indicates acute pancreatitis and carcinoma of the pancreas.
Liver Enzymes
Markers of Hepatocellular Damage
1. Aspartate transaminase (AST) Aspartate transaminase is present in high concentrations in cells of cardiac and skeletal muscle, liver, kidney and erythrocytes. Damage to any of these tissues may increase plasma AST levels.
The normal value of AST for male is <35 U/ L and for female it is <31 U/L.
2. Alanine transaminase (ALT) Alanine transaminase is present at high concentrations in liver and to a lesser extent, in skeletal muscle, kidney and heart. Thus in case of liver damage increase in both AST and ALT were noticed. While in myocardial infarction AST is increased with little or no increase in ALT.
The normal value of ALT is <45 U/L and <34 U/L for male and female respectively
Markers of cholestasis
1. Alkaline phosphatases
Alkaline phosphatases are a group of enzymes that hydrolyse organic phosphates at high pH. They are present in osteoblasts of bone, the cells of the hepatobiliary tract, intestinal wall, renal tubules and placenta.
Gamma-glutamyl-transferase (GGT) Gamma-glutamyl-transferase catalyzes the transfere of the γ–glutamyl group from peptides. The activity of GGT is higher in men than in women. In male the normal value of GGT activity is <55 U/L and for female it is <38 U/L.
2. Glutamate dehydrogenase (GLD) Glutamate dehydrogenase is a mitochondrial enzyme found in liver, heart muscle and kidneys.
Muscle Enzymes
1. Creatine Kinase Creatine kinase (CK) is most abundant in cells of brain, cardiac and skeletal.
2. Lactate Dehydrogenase
Lactate dehydrogenase (LD) catalyses the reversible interconversion of lactate and pyruvate.
CLASSIFICATION OF LIPIDS
Lipids are classified as follows:
1. Simple lipids: Esters of fatty acids with various alcohols.
(a) Fats: Esters of fatty acids with glycerol. Oils are fats in the liquid state. A long-chain carboxylic acid; those in animal fats and vegetable oils often have 12–22 carbon atoms.
(b) Waxes: Esters of fatty acids with higher molecular weight monohydric alcohols. Waxes are carboxylic acid esters, RCOOR’ ,with long, straight hydrocarbon chains in both R groups
2. Complex lipids: Esters of fatty acids containing groups in addition to an alcohol and a fatty acid.
(a) Phospholipids: Lipids containing, in addition to fatty acids and an alcohol, a phosphoric acid residue. They frequently have nitrogen containing bases and other substituents,
Eg glycerophospholipids the alcohol is glycerol
sphingophospholipids the alcohol is sphingosine.
(b) Glycolipids (glycosphingolipids): Lipids containing a fatty acid, sphingosine, and carbohydrate. These lipids contain a fatty acid, carbohydrate and nitrogenous base. The alcohol is sphingosine, hence they are also called as glycosphingolipids. Clycerol and phosphate are absent
e.g., cerebrosides, gangliosides.
(c) Other complex lipids: Lipids such as sulfolipids and aminolipids. Lipoproteins may also be placed in this category.
3. Precursor and derived lipids: These include fatty acids, glycerol, steroids, other alcohols, fatty aldehydes, and ketone bodies, hydrocarbons, lipid soluble vitamins, and hormones. Because they are uncharged, acylglycerols (glycerides), cholesterol, and cholesteryl esters are termed neutral lipids
4. Miscellaneous lipids: These include a large number of compounds possessing the characteristics of lipids e.g., carotenoids, squalene, hydrocarbons such as pentacosane (in bees wax), terpenes etc.
NEUTRAL LIPIDS: The lipids which are uncharged are referred to as neutral lipids. These are mono-, di-, and triacylglycerols, cholesterol and cholesteryl esters.
Function of Calcium
The major functions of calcium are
(a) Excitation and contraction of muscle fibres needs calcium. The active transport system utilizing calcium binding protein is called Calsequestrin. Calcium decreases neuromuscular irritability.
(b) Calcium is necessary for transmission of nerve impulse from presynaptic to postsynaptic region.
(c) Calcium is used as second messenger in system involving protein and inositol triphosphate.
(d) Secretion of insulin, parathyroid hormone, calcium etc, from the cells requires calcium.
(e) Calcium decrease the passage of serum through capillaries thus, calcium is clinically used to reduce allergic exudates.
(f) Calcium is also required for coagulation factors such as prothrombin.
(g) Calcium prolongs systole.
(h) Bone and teeth contains bulk quantity of calcium.