Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Biochemistry

Thyroid Hormones

Thyroid hormones (T4 and T3) are tyrosine-based hormones produced by the follicular cells of the thyroid gland and are regulated by TSH made by the thyrotropes of the anterior pituitary gland, are primarily responsible for regulation of metabolism. Iodine is necessary for the production of T3 (triiodothyronine) and T4 (thyroxine).

A deficiency of iodine leads to decreased production of T3 and T4, enlarges  the thyroid tissue and will cause the disease known as goitre.

Thyroid hormones are transported by Thyroid-Binding Globulin

Thyroxine binding globulin (TBG), a glycoprotein binds T4 and T3 and has the capacity to bind 20 μg/dL of plasma.

Diseases

1. Hyperthyroidism (an example is Graves Disease) is the clinical syndrome caused by an excess of circulating free thyroxine, free triiodothyronine, or both. It is a common disorder that affects approximately 2% of women and 0.2% of men.

2 Hypothyroidism (an example is Hashimoto’s thyroiditis) is the case where there is a deficiency of thyroxine, triiodiothyronine, or both.

The basic characteristics of enzymes includes

(i) Almost all the enzymes are proteins and they follow the physical and chemical reactions of proteins (ii) Enzymes are sensitive and labile to heat

(iii) Enzymes are water soluble

(iv) Enzymes could be precipitated by protein precipitating agents such as ammonium sulfate and trichloroacetic acid.

- There are two important phospholipids, Phosphatidylcholine and Phosphatidylserine found the cell membrane without which cell cannot function normally.

- Phospholipids are also important for optimal brain health as they found the cell membrane of brain cells also which help them to communicate and influence the receptors function. That is the reason food stuff which is rich in phospholipids like soy, eggs and the brain tissue of animals are good for healthy and smart brain.

- Phospholipids are the main component of cell membrane or plasma membrane. The bilayer of phospholipid molecules determine the transition of minerals, nutrients, and drugs in and out of the cell and affect various functions of them.

- As phospholipids are main component of all cell membrane, they influence a number of organs and tissues, such as the heart, blood cells and the immune system. As we grown up the amount of phospholipids decreases and reaches to decline.

- Phospholipids present in cell membrane provide cell permeability and flexibility with various substances as well its ability to move fluently. The arrangement of phospholipid molecules in lipid bilayer prevent amino acids, carbohydrates, nucleic acids, and proteins from moving across the membrane by diffusion. The lipid bi-layer is usually help to prevent adjacent molecules from sticking to each other.

- The selectivity of cell membrane form certain substances are due to the presence of hydrophobic and hydrophilic part molecules and their arrangement in bilayer. This bilayer is also maintained the normal pH of cell to keeps it functioning properly.

- Phospholipids are also useful in the treatment of memory problem associated with chronic substances as they improve the ability of organism to adapt the chronic stress.

The input to fatty acid synthesis is acetyl-CoA, which is carboxylated to malonyl-CoA.

The ATP-dependent carboxylation provides energy input. The CO2 is lost later during condensation with the growing fatty acid. The spontaneous decarboxylation drives the condensation. 

 fatty acid synthesis
acetyl-CoA + 7 malonyl-CoA + 14 NADPH palmitate + 7 CO2 + 14 NADP+ + 8 CoA

ATP-dependent synthesis of malonate:
8 acetyl-CoA + 14 NADPH + 7 ATP palmitate + 14 NADP+ + 8 CoA + 7 ADP + 7 Pi

Fatty acid synthesis occurs in the cytosol. Acetyl-CoA generated in the mitochondria is transported to the cytosol via a shuttle mechanism involving citrate

Glycogen Storage Diseases are genetic enzyme deficiencies associated with excessive glycogen accumulation within cells.

  • When an enzyme defect affects mainly glycogen storage in liver, a common symptom is hypoglycemia (low blood glucose), relating to impaired mobilization of glucose for release to the blood during fasting.
  • When the defect is in muscle tissue, weakness and difficulty with exercise result from inability to increase glucose entry into Glycolysis during exercise.

Various type of Glycogen storage disease are

Type

Name

Enzyme Deficient

I

Von Geirke’s Disease

Glucose -6-phosphate

II

Pompe’s Disease

(1, 4)glucosidase

III

Cori’s Disease

Debranching Enzymes

IV

Andersen’s Disease

Branching Enzymes

V

McArdle’s Disease

Muscles Glycogen Phosphorylase

The Phosphate Buffer System

This system, which acts in the cytoplasm of all cells, consists of H2PO4  as proton donor and HPO4 2– as proton acceptor :

H2PO4 = H+ + H2PO4

The phosphate buffer system works exactly like the acetate buffer system, except for the pH range in which it functions. The phosphate buffer system is maximally effective at a pH close to its pKa of 6.86 and thus tends to resist pH changes in the range between 6.4 and 7.4. It is, therefore, effective in providing buffering power in intracellular fluids.

CHOLESTEROL AND ITS IMPORTANCE

Cholesterol is an important lipid found in the cell membrane. It is a sterol, which means that cholesterol is a combination of a steroid and an alcohol .

It is an important component of cell membranes and is also the basis for the synthesis of other steroids, including the sex hormones estradiol and testosterone, as well as other steroids such as cortisone and vitamin D.

In the cell membrane, the steroid ring structure of cholesterol provides a rigid hydrophobic structure that helps boost the rigidity of the cell membrane.

Without cholesterol the cell membrane would be too fluid. In the human body, cholesterol is synthesized in the liver.

Cholesterol is insoluble in the blood, so when it is released into the blood stream it forms complexes with lipoproteins.

 

Cholesterol can bind to two types of lipoprotein, called high-density lipoprotein (HDL) and low-density lipoprotein (LDL).

A lipoprotein is a spherical molecule with water soluble proteins on the exterior. Therefore, when cholesterol is bound to a lipoprotein, it becomes blood soluble and can be transported throughout the body.

HDL cholesterol is transported back to the liver. If HDL levels are low, then the blood level of cholesterol will increase.

High levels of blood cholesterol are associated with plaque formation in the arteries, which can lead to heart disease and stroke.

Explore by Exams