NEET MDS Lessons
Biochemistry
Applications of the Henderson-Hasselbalch equation
• Calculate the ratio of CB to WA, if pH is given
• Calculate the pH, if ratio of CB to WA is known
• Calculate the pH of a weak acid solution of known concentration
• Determine the pKa of a WA-CB pair
• Calculate change in pH when strong base is added to a solution of weak acid. This is represented in a titration curve
• Calculate the pI
BIOLOGICAL BUFFER SYSTEMS
Cells and organisms maintain a specific and constant cytosolic pH, keeping biomolecules in their optimal ionic state, usually near pH 7. In multicelled organisms, the pH of the extracellular fluids (blood, for example) is also tightly regulated. Constancy of pH is achieved primarily by biological buffers : mixtures of weak acids and their conjugate bases
Body fluids and their principal buffers
Body fluids Principal buffers
Extracellular fluids {Biocarbonate buffer Protein buffer }
Intracellular fluids {Phosphate buffer, Protein }
Erythrocytes {Hemoglobin buffer}
Amino Acid Catabolism
Glutamine/Glutamate and Asparagine/Aspartate Catabolism
Glutaminase is an important kidney tubule enzyme involved in converting glutamine (from liver and from other tissue) to glutamate and NH3+, with the NH3+ being excreted in the urine. Glutaminase activity is present in many other tissues as well, although its activity is not nearly as prominent as in the kidney. The glutamate produced from glutamine is converted to a-ketoglutarate, making glutamine a glucogenic amino acid.
Asparaginase is also widely distributed within the body, where it converts asparagine into ammonia and aspartate. Aspartate transaminates to oxaloacetate, which follows the gluconeogenic pathway to glucose.
Glutamate and aspartate are important in collecting and eliminating amino nitrogen via glutamine synthetase and the urea cycle, respectively. The catabolic path of the carbon skeletons involves simple 1-step aminotransferase reactions that directly produce net quantities of a TCA cycle intermediate. The glutamate dehydrogenase reaction operating in the direction of a-ketoglutarate production provides a second avenue leading from glutamate to gluconeogenesis.
Alanine Catabolism
Alanine is also important in intertissue nitrogen transport as part of the glucose-alanine cycle. Alanine's catabolic pathway involves a simple aminotransferase reaction that directly produces pyruvate. Generally pyruvate produced by this pathway will result in the formation of oxaloacetate, although when the energy charge of a cell is low the pyruvate will be oxidized to CO2 and H2O via the PDH complex and the TCA cycle. This makes alanine a glucogenic amino acid.
Arginine, Ornithine and Proline Catabolism
The catabolism of arginine begins within the context of the urea cycle. It is hydrolyzed to urea and ornithine by arginase.
Ornithine, in excess of urea cycle needs, is transaminated to form glutamate semialdehyde. Glutamate semialdehyde can serve as the precursor for proline biosynthesis as described above or it can be converted to glutamate.
Proline catabolism is a reversal of its synthesis process.
The glutamate semialdehyde generated from ornithine and proline catabolism is oxidized to glutamate by an ATP-independent glutamate semialdehyde dehydrogenase. The glutamate can then be converted to α-ketoglutarate in a transamination reaction. Thus arginine, ornithine and proline, are glucogenic.
Methionine Catabolism
The principal fates of the essential amino acid methionine are incorporation into polypeptide chains, and use in the production of α -ketobutyrate and cysteine via SAM as described above. The transulfuration reactions that produce cysteine from homocysteine and serine also produce α -ketobutyrate, the latter being converted to succinyl-CoA.
Regulation of the methionine metabolic pathway is based on the availability of methionine and cysteine
Phenylalanine and Tyrosine Catabolism
Phenylalanine normally has only two fates: incorporation into polypeptide chains, and production of tyrosine via the tetrahydrobiopterin-requiring phenylalanine hydroxylase. Thus, phenylalanine catabolism always follows the pathway of tyrosine catabolism. The main pathway for tyrosine degradation involves conversion to fumarate and acetoacetate, allowing phenylalanine and tyrosine to be classified as both glucogenic and ketogenic.
Tyrosine is equally important for protein biosynthesis as well as an intermediate in the biosynthesis of several physiologically important metabolites e.g. dopamine, norepinephrine and epinephrine
Function of Calcium
The major functions of calcium are
(a) Excitation and contraction of muscle fibres needs calcium. The active transport system utilizing calcium binding protein is called Calsequestrin. Calcium decreases neuromuscular irritability.
(b) Calcium is necessary for transmission of nerve impulse from presynaptic to postsynaptic region.
(c) Calcium is used as second messenger in system involving protein and inositol triphosphate.
(d) Secretion of insulin, parathyroid hormone, calcium etc, from the cells requires calcium.
(e) Calcium decrease the passage of serum through capillaries thus, calcium is clinically used to reduce allergic exudates.
(f) Calcium is also required for coagulation factors such as prothrombin.
(g) Calcium prolongs systole.
(h) Bone and teeth contains bulk quantity of calcium.
3-D Structure of proteins
Proteins are the main players in the life of a cell. Each protein is a unique sequence of amino acid residues, each of which folds into a unique, stable, three dimentional structure that is biologically functional.
Conformation = spatial arrangement of atoms that depends on rotation of bonds. Can change without breaking covalent bonds.
- Since each residue has a number of possible conformations, and there are many residues in a protein, the number of possible conformations for a protein is enormous.
Native conformation = single, stable shape a protein assumes under physiological conditions.
- In native conformation, rotation around covalent bonds in polypeptide is constrained by a number of factors ( H-bonding, weak interactions, steric interference)
- Biological function of proteins depends completely on its conformation. In biology, shape is everything.
- Proteins can be classified as globular or fibrous.
There are 4 levels of protein structure
- Primary structure
- linear sequence of amino acids
- held by covalent forces
- primary structure determines all oversall shape of folded polypeptides (i.e primary structure determines secondary , tertiary, and quaternary structures)
- Secondary structure
- regions of regularly repeating conformations of the peptide chain (α helices, β sheets)
- maintained by H-bonds between amide hydrogens and carbonyl oxygens of peptide backbone.
- Tertiary structure
- completely folded and compacted polypeptide chain.
- stabilized by interactions of sidechains of non-neighboring amino acid residues (fibrous proteins lack tertiary structure)
- Quaternary structure
- association of two or more polypeptide chains into a multisubunit protein.
The Bicarbonate Buffer System
This is the main extracellular buffer system which (also) provides a means for the necessary removal of the CO2 produced by tissue metabolism. The bicarbonate buffer system is the main buffer in blood plasma and consists of carbonic acid as proton donor and bicarbonate as proton acceptor :
H2CO3 = H+ + HCO3–
If there is a change in the ratio in favour of H2CO3, acidosis results.
This change can result from a decrease in [HCO3 − ] or from an increase in [H2CO3 ]
Most common forms of acidosis are metabolic or respiratory
Metabolic acidosis is caused by a decrease in [HCO3 − ] and occurs, for example, in uncontrolled diabetes with ketosis or as a result of starvation.
Respiratory acidosis is brought about when there is an obstruction to respiration (emphysema, asthma or pneumonia) or depression of respiration (toxic doses of morphine or other respiratory depressants)
Alkalosis results when [HCO3 − ] becomes favoured in the bicarbonate/carbonic acid ratio
Metabolic alkalosis occurs when the HCO3 − fraction increases with little or no concomitant change in H2CO3
Severe vomiting (loss of H+ as HCl) or ingestion of excessive amounts of sodium bicarbonate (bicarbonate of soda) can produce this condition
Respiratory alkalosis is induced by hyperventilation because an excessive removal of CO2 from the blood results in a decrease in [H2CO3 ]
Alkalosis can produce convulsive seizures in children and tetany, hysteria, prolonged hot baths or lack of O2 as high altitudes.
The pH of blood is maintained at 7.4 when the buffer ratio [HCO3 − ] / [ H2CO3] becomes 20
Enzymes are protein catalyst produced by a cell and responsible ‘for the high rate’ and specificity of one or more intracellular or extracellular biochemical reactions.
Enzymes are biological catalysts responsible for supporting almost all of the chemical reactions that maintain animal homeostasis. Enzyme reactions are always reversible.
The substance, upon which an enzyme acts, is called as substrate. Enzymes are involved in conversion of substrate into product.
Almost all enzymes are globular proteins consisting either of a single polypeptide or of two or more polypeptides held together (in quaternary structure) by non-covalent bonds. Enzymes do nothing but speed up the rates at which the equilibrium positions of reversible reactions are attained.
In terms of thermodynamics, enzymes reduce the activation energies of reactions, enabling them to occur much more readily at low temperatures - essential for biological systems.