NEET MDS Lessons
Biochemistry
Classification of Fatty Acids and Triglycerides
Short-chain: 2-4 carbon atoms
Medium-chain: 6-12 carbon atoms
Long-chain: 14-20 carbon atoms
Very long-chain: >20 carbon atoms
• are usually in esterified form as major components of other lipids
A16-carbon fatty acid, with one cis double bond between carbon atoms 9 and 10 may be represented as 16:1 cisD9.
Double bonds in fatty acids usually have the cis configuration. Most naturally occurring fatty acids have an even number of carbon atoms
Examples of fatty acids
18:0 |
stearic acid |
18:1 cisD9 |
oleic acid |
18:2 cisD9,12 |
linoleic acid |
18:3 cisD9,12,15 |
linonenic acid |
20:4 cisD5,8,11,14 |
arachidonic acid |
There is free rotation about C-C bonds in the fatty acid hydrocarbon, except where there is a double bond. Each cis double bond causes a kink in the chain,
BIOLOGICAL ROLES OF LIPID
Lipids have the common property of being relatively insoluble in water and soluble in nonpolar solvents such as ether and chloroform. They are important dietary constituents not only because of their high energy value but also because of the fat-soluble vitamins and the essential fatty acids contained in the fat of natural foods
Nonpolar lipids act as electrical insulators, allowing rapid propagation of depolarization waves along myelinated nerves
Combinations of lipid and protein (lipoproteins) are important cellular constituents, occurring both in the cell membrane and in the mitochondria, and serving also as the means of transporting lipids in the blood.
Titration of a weak acid with a strong base
• A weak acid is mostly in its conjugate acid form
• When strong base is added, it removes protons from the solution, more and more acid is in the conjugate base form, and the pH increases
• When the moles of base added equals half the total moles of acid, the weak acid and its conjugate base are in equal amounts. The ratio of CB / WA = 1 and according to the HH equation, pH = pKa + log(1) or pH = pKa.
• If more base is added, the conjugate base form becomes greater till the equivalance point when all of the acid is in the conjugate base form.
Vitamin B12: Cobalamin
Vitamin B12, also known as cobalamin, aids in the building of genetic material, production of normal red blood cells, and maintenance of the nervous system.
RDA The Recommended Dietary Allowance (RDA) for vitamin B12 is 2.4 mcg/day for adult males and females
Vitamin B12 Deficiency
Vitamin B12 deficiency most commonly affects strict vegetarians (those who eat no animal products), infants of vegan mothers, and the elderly. Symptoms of deficiency include anemia, fatigue, neurological disorders, and degeneration of nerves resulting in numbness and tingling.
The input to fatty acid synthesis is acetyl-CoA, which is carboxylated to malonyl-CoA.
The ATP-dependent carboxylation provides energy input. The CO2 is lost later during condensation with the growing fatty acid. The spontaneous decarboxylation drives the condensation.
fatty acid synthesis
acetyl-CoA + 7 malonyl-CoA + 14 NADPH → palmitate + 7 CO2 + 14 NADP+ + 8 CoA
ATP-dependent synthesis of malonate:
8 acetyl-CoA + 14 NADPH + 7 ATP → palmitate + 14 NADP+ + 8 CoA + 7 ADP + 7 Pi
Fatty acid synthesis occurs in the cytosol. Acetyl-CoA generated in the mitochondria is transported to the cytosol via a shuttle mechanism involving citrate
Vitamin B6: Pyridoxine, Pyridoxal, Pyridoxamine
Aids in protein metabolism and red blood cell formation. It is also involved in the body’s production of chemicals such as insulin and hemoglobin.
Vitamin B6 Deficiency Deficiency symptoms include skin disorders, dermatitis, cracks at corners of mouth, anemia, kidney stones, and nausea. A vitamin B6 deficiency in infants can cause mental confusion.
Gluconeogenesis
It is the process by which Glucose or glycogen is formed from non carbohydrate substances.
Gluconeogenesis occurs mainly in liver.
Gluconeogenesis inputs:
The source of pyruvate and oxaloacetate for gluconeogenesis during fasting or carbohydrate starvation is mainly amino acid catabolism. Some amino acids are catabolized to pyruvate, oxaloacetate, Muscle proteins may break down to supply amino acids. These are transported to liver where they are deaminated and converted to gluconeogenesis inputs.
Glycerol, derived from hydrolysis of triacylglycerols in fat cells, is also a significant input to gluconeogenesis
Glycolysis & Gluconeogenesis pathways are both spontaneous If both pathways were simultaneously active within a cell it would constitute a "futile cycle" that would waste energy
Glycolysis yields 2~P bonds of ATP.
Gluconeogenesis expends 6~P bonds of ATP and GTP.
A futile cycle consisting of both pathways would waste 4 P.bonds per cycle.To prevent this waste, Glycolysis and Gluconeogenesis pathways are reciprocally regulated.