Talk to us?

Biochemistry - NEETMDS- courses
NEET MDS Lessons
Biochemistry

TRIGLYCEROL

 

Triacylglycerols (formerly triglycerides) are the esters of glycerol with fatty acids. The fats and oils that are widely distributed in both  plants and animals are chemically triacylglycerols.

 

They are insoluble in water and non-polar in character and commonly known as neutral fats.


Triacylglycerols are the most abundant dietary lipids. They are the form in which we store reduced carbon for energy. Each triacylglycerol has a glycerol backbone to which are esterified 3 fatty acids. Most triacylglycerols are "mixed." The three fatty acids differ in chain length and number of double bonds

 

Structures of acylglycerols :

Monoacylglycerols,  diacylglycerols and triacylglycerols, respectively consisting of one, two and three molecules of fatty acids esterified to

a molecule of glycerol

 

Lipases hydrolyze triacylglycerols, releasing one fatty acid at a time, producing  diacylglycerols, and eventually glycerol

 

Glycerol arising from hydrolysis of triacylglycerols is converted to the Glycolysis intermediate dihydroxyacetone phosphate, by reactions catalyzed by:
(1) Glycerol Kinase
(2) Glycerol Phosphate Dehydrogenase

Free fatty acids, which in solution have detergent properties, are transported in the blood bound to albumin, a serum protein produced by the liver.
Several proteins have been identified that facilitate transport of long chain fatty acids into cells, including the plasma membrane protein CD36

 

b Oxidation Pathway

Fatty Acid Synthesis

pathway location

mitochondrial matrix

cytosol

acyl carriers (thiols)

Coenzyme-A

phosphopantetheine (ACP) & cysteine

electron acceptors/donor

FAD & NAD+

NADPH

hydroxyl intermediate

L

D

2-C product/donor

acetyl-CoA

malonyl-CoA (& acetyl-CoA)

Step 1.  Acyl-CoA Dehydrogenase catalyzes oxidation of the fatty acid moiety of acyl-CoA, to produce a double bond between carbon atoms 2 and 3.

There are different Acyl-CoA Dehydrogenases for short (4-6 C), medium (6-10 C), long and very long (12-18 C) chain fatty acids. Very Long Chain Acyl-CoA Dehydrogenase is bound to the inner mitochondrial membrane. The others are soluble enzymes located in the mitochondrial matrix.

FAD is the prosthetic group that functions as electron acceptor for Acyl-CoA Dehydrogenase. 

A glutamate side-chain carboxyl extracts a proton from the a-carbon of the substrate, facilitating transfer of 2 e- with H+ (a hydride) from the b position to FAD. The reduced FAD accepts a second H+, yielding FADH2

The carbonyl oxygen of the thioester substrate is hydrogen bonded to the 2'-OH of the ribityl moiety of FAD, giving this part of FAD a role in positioning the substrate and increasing acidity of the substrate a-proton

The reactive glutamate and FAD are on opposite sides of the substrate at the active site. Thus the reaction is stereospecific, yielding a trans double bond in enoyl-CoA.

FADH2 of Acyl CoA Dehydrogenase is reoxidized by transfer of 2 electrons to an Electron Transfer Flavoprotein (ETF), which in turn passes the electrons to coenzyme Q of the respiratory chain.

Step 2. Enoyl-CoA Hydratase catalyzes stereospecific hydration of the trans double bond produced in the 1st step of the pathway, yielding L-hydroxyacyl-Coenzyme A

Step 3. Hydroxyacyl-CoA Dehydrogenase catalyzes oxidation of the  hydroxyl in the b position (C3) to a ketone. NAD+ is the electron acceptor.

Step 4. b-Ketothiolase (b-Ketoacyl-CoA Thiolase) catalyzes thiolytic cleavage.

A cysteine S attacks the b-keto C. Acetyl-CoA is released, leaving the fatty acyl moiety in thioester linkage to the cysteine thiol. The thiol of HSCoA displaces the cysteine thiol, yielding fatty acyl-CoA (2 C shorter).

A membrane-bound trifunctional protein complex with two subunit types expresses the enzyme activities for steps 2-4 of the b-oxidation pathway for long chain fatty acids. Equivalent enzymes for shorter chain fatty acids are soluble proteins of the mitochondrial matrix.

Summary of one round of the b-oxidation pathway:

fatty acyl-CoA + FAD + NAD+ + HS-CoA → 
            fatty acyl-CoA (2 C shorter) + FADH2 + NADH + H+ + acetyl-CoA

The b-oxidation pathway is cyclic. The product, 2 carbons shorter, is the input to another round of the pathway. If, as is usually the case, the fatty acid contains an even number of C atoms, in the final reaction cycle butyryl-CoA is converted to 2 copies of acetyl-CoA

ATP production:

  • FADH2 of Acyl CoA Dehydrogenase is reoxidized by transfer of 2 e- via ETF to coenzyme Q of the respiratory chain. H+ ejection from the mitochondrial matrix that accompanies transfer of 2 e- from CoQ to oxygen, leads via chemiosmotic coupling to production of approximately 1.5 ATP. (Approx. 4 H+ enter the mitochondrial matrix per ATP synthesized.)
  • NADH is reoxidized by transfer of 2 e- to the respiratory chain complex I. Transfer of 2 e- from complex I to oxygen yields approximately 2.5 ATP.
  • Acetyl-CoA can enter Krebs cycle, where the acetate is oxidized to CO2, yielding additional NADH, FADH2, and ATP. 
  • Fatty acid oxidation is a major source of cellular ATP

b-Oxidation of very long chain fatty acids also occurs within peroxisomes

 

FAD is electron acceptor for peroxisomal Acyl-CoA Oxidase, which catalyzes the first oxidative step of the pathway. The resulting FADH2 is reoxidized in the peroxisome producing hydrogen peroxide FADH2 + O2 à FAD + H2O2

The peroxisomal enzyme Catalase degrades H2O2 by the reaction:
2 H2O22 H2O + O2
These reactions produce no ATP

Once fatty acids are reduced in length within the peroxisomes they may shift to the mitochondria to be catabolized all the way to CO2. Carnitine is also involved in transfer of fatty acids into and out of peroxisomes

Carbohydrates (glycans) have the  basic composition

  • Monosaccharides - simple sugars,  with multiple hydroxyl groups. Based on the number of carbons (e.g., 3, 4, 5, or 6) a monosaccharide is a triose, tetrose, pentose, or hexose, etc.
  • Disaccharides - two monosaccharides covalently linked
  • Oligosaccharides - a few monosaccharides covalently linked.
  • Polysaccharides - polymers consisting of chains of monosaccharide or disaccharide units

The Effects of Enzyme Inhibitors

Enzymes can be inhibited

  • competitively, when the substrate and inhibitor compete for binding to the same active site or
  • noncompetitively, when the inhibitor binds somewhere else on the enzyme molecule reducing its efficiency.

The distinction can be determined by plotting enzyme activity with and without the inhibitor present.

Competitive Inhibition

In the presence of a competitive inhibitor, it takes a higher substrate concentration to achieve the same velocities that were reached in its absence. So while Vmax can still be reached if sufficient substrate is available, one-half Vmax requires a higher [S] than before and thus Km is larger.

Noncompetitive Inhibition

With noncompetitive inhibition, enzyme molecules that have been bound by the inhibitor are taken out

  • enzyme rate (velocity) is reduced for all values of [S], including
  • Vmax and one-half Vmax but
  • Km remains unchanged because the active site of those enzyme molecules that have not been inhibited is unchanged.

VITAMIN C: ASCORBIC ACID, ASCORBATE

Vitamin C benefits the body by holding cells together through collagen synthesis; collagen is a connective tissue that holds muscles, bones, and other tissues together. Vitamin C also aids in wound healing, bone and tooth formation, strengthening blood vessel walls, improving immune system function, increasing absorption and utilization of iron, and acting as an antioxidant.

RDA The Recommended Dietary Allowance (RDA) for Vitamin C is 90 mg/day for adult males and 75 mg/day for adult females

Vitamin C Deficiency

Severe vitamin C deficiency result in the disease known as scurvy, causing a loss of collagen strength throughout the body. Loss of collagen results in loose teeth, bleeding and swollen gums, and improper wound healing.

Functions of  lipids

1. They are the concentrated fuel reserve of the body  (triacylglycerols).

2. Lipids are the constituents of membrane structure and regulate the membrane permeability (phospholipids  and cholesterol).

3. They serve as a source of fat soluble vitamins (A, D, E and K).

4. Lipids are important as cellular metabolic regulators (steroid  hormones and prostaglandins).

5. Lipids protect the internal organs, serve as insulating materials and give shape and smooth appearance to the body.

Explore by Exams