Talk to us?

Dental Anatomy - NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Compensating curvatures of the individual teeth.

- the gentle curvature of the long axes of certain posterior teeth to exhibit a gentle curvature.

-These are probably analogous to the trabecular patterns seen in the femur and therefore reflect lines of stress experienced during function.

 

Posteruptive tooth movement.

These movements occur after eruption of the teeth into function in the oral cavity. These movements, known collectively as occlusomesial forces.

A. Continuous tooth eruption eruption of teeth after coming into occlusion. This process compensates for occlusal tooth wear.. Cementum deposition and progressive remodelling of the alveolar bone are the growth processes that provide for continuous tooth movement

B. Physiological mesial drift :Tthe tendency of permanent posterior teeth to migrate mesially in the dental arch both before and after they come into occlusion. Clinically, it compensates for proximal tooth wear.

(1) It describes the tendency of posterior teeth to move anteriorly.

(2) It applies to permanent teeth, not deciduous teeth.

(3) The distal tooth have the stronger is the tendency for drift.

(4) It compensates for proximal wear.

(5) In younger persons, teeth drift bodily; in older persons, they tip and rotate.

(6) Forces that cause it include occlusal forces, PDL contraction, and soft tissue pressures. There may be other more subtle factors as well.

 

Height  of Epithelial Attachment

The height of normal gingival tissue . mesiallv and distallv on approximating teeth, is directly dependent upon the height of the epithelial attachment on these teeth. Normal attachment follows the curvature of the cementoenamel junction if the teeth are jn proper, alignment and contact.

Enamel

Composition: 96% mineral, 4% organic material and water
Crystalline calcium phosphate, hydroxyapatite
Physical characteristics: Hardness compared to mild steel; enamel is brittle
Support from dentin is necessary
Enamel has varies in thickness

Structure of enamel

Ground sections of enamel disclose the information that we have about enamel
Enamel is composed of rods
In the past we used the term prism (do not use)
 

Enamel rod
The rod has a cylinder-like shape and is composed of crystals that run parallel to the longitudinal axis of the rod. At the periphery of the rod the crystals flare laterally.
Interrod region: surrounds each rod; contain more enamel protein (fish scale appearance)
Rod sheath: boundary where crystals of rods meet those of the interrod region at sharp angles (We used to describe that as a keyhole configuration)
Each ameloblast forms one rod and together with adjacent ameloblasts the interrod region Very close to dentin there is no rod structure since the Tomes' processes develop after the first enamel is formed.
Striae of Retzius and cross striations
Incremental lines
Enamel structure is altered along these lines
Cross striations are also a form of incremental lines highlighting the daily secretory activity of ameloblasts

Bands of Hunter and Schreger
Optical phenomenon produced by changes in rod direction

Gnarled enamel
Twisting of rods around each other over the cusps of teeth

Enamel tufts and lamellae
They are like geologic faults
Tufts project from the DE junction, appear branched and contain greater concentrations of enamel protein than enamel
Lamellae extend from the enamel surface
Enamel spindles

Perikymata
Shallow furrows on surface of enamel formed by the striae of Retzius

THE DECIDUOUS DENTITION

 

I. The Deciduous Dentition

-It is also known as the primary, baby, milk or lacteal dentition.

diphyodont, that is, with two sets of teeth. The term deciduous means literally 'to fall off.'

  There are twenty deciduous teeth that are classified into three classes. There are ten maxillary teeth and ten mandibular teeth. The dentition consists of incisors, canines and molars.

Mandibular Second Deciduous Molar.

-This tooth resembles the lower first permanent molar that is d

istal to it in the dental arch.

-There are two roots and five cusps. The three buccal cusps are all about the same size. This is in contrast to the lower first molar where the 'distal' cusp is smaller that the mesiobuccal and distobuccal cusps.

-The distal of the three buccal cusps may be shifted of onto the distal marginal ridge.  

 

NOTE

-Upper molars have three roots, lowers have two roots.

-Upper and lower second deciduous molars resemble first permanent molars in the same quadrant.

-Upper first deciduous molars vaguely resemble upper premolars. -Lower first deciduous molars are odd and unique unto themselves.

-First deciduous molars (upper and lower) have a prominent bulge of enamel on the buccal at the mesial. These help in determining right and left.

Development of occlusion.

A. Occlusion  usually means the contact relationship in function. Concepts of occlusion vary with almost every specialty of dentistry.

Centric occlusion is the maximum contact and/or intercuspation of the teeth.

 

B. Occlusion is the sum total of many factors.

1. Genetic factors.

-Teeth can vary in size. Examples are microdontia (very small teeth) and macrodontia (very large teeth). Incidentally, Australian aborigines have the largest molar tooth size—some 35% larger than the smallest molar tooth group

-The shape of individual teeth can vary (such as third molars and the upper lateral incisors.)

-They can vary when and where they erupt, or they may not erupt at all (impaction).

-Teeth can be congenitally missing (partial or complete anodontia), or there can be extra (supernumerary) teeth.

-The skeletal support (maxilla/mandible) and how they are related to each other can vary considerably from the norm.

 

2. Environmental factors.

-Habits can have an affect: wear, thumbsucking, pipestem or cigarette holder usage, orthodontic appliances, orthodontic retainers have an influence on the occlusion.

 

3.Muscular pressure.

-Once the teeth erupt into the oral cavity, the position of teeth is affected by other teeth, both in the same dental arch and by teeth in the opposing dental arch.

-Teeth are affected by muscular pressure on the facial side (by cheeks/lips) and on the lingual side (by the tongue).

 

C. Occlusion constantly changes with development, maturity, and aging.

1 . There is change with the eruption and shedding of teeth as the successional changes from deciduous to permanent dentitions take place.

2. Tooth wear is significant over a lifetime. Abrasion, the wearing away of the occlusal surface reduces crown height and alters occlusal anatomy.

Attrition of the proximal surfaces reduces the mesial-distal dimensions of the teeth and significantly reduces arch length over a lifetime.

Abraision is the wear of teeth by agencies other than the friction of one tooth against another.

Attrition is the wear of teeth by one tooth rubbing against another

3. Tooth loss leaves one or more teeth without an antagonist. Also, teeth drift, tip, and rotate when other teeth in the arch are extracted.

Tooth eruption Theories

Tooth eruption occurs when the teeth enter the mouth and become visible. Although researchers agree that tooth eruption is a complex process, there is little agreement on the identity of the mechanism that controls eruption. Some commonly held theories that have been disproven over time include: (1) the tooth is pushed upward into the mouth by the growth of the tooth's root, (2) the tooth is pushed upward by the growth of the bone around the tooth, (3) the tooth is pushed upward by vascular pressure, and (4) the tooth is pushed upward by the cushioned hammock. The cushioned hammock theory, first proposed by Harry Sicher, was taught widely from the 1930s to the 1950s. This theory postulated that a ligament below a tooth, which Sicher observed on under a microscope on a histologic slide, was responsible for eruption. Later, the "ligament" Sicher observed was determined to be merely an artifact created in the process of preparing the slide.

The most widely held current theory is that while several forces might be involved in eruption, the periodontal ligaments provide the main impetus for the process. Theorists hypothesize that the periodontal ligaments promote eruption through the shrinking and cross-linking of their collagen fibers and the contraction of their fibroblasts.

Although tooth eruption occurs at different times for different people, a general eruption timeline exists. Typically, humans have 20 primary (baby) teeth and 32 permanent teeth. Tooth eruption has three stages. The first, known as deciduous dentition stage, occurs when only primary teeth are visible. Once the first permanent tooth erupts into the mouth, the teeth are in the mixed (or transitional) dentition. After the last primary tooth falls out of the mouth—a process known as exfoliation—the teeth are in the permanent dentition.

Primary dentition starts on the arrival of the mandibular central incisors, usually at eight months, and lasts until the first permanent molars appear in the mouth, usually at six years. The primary teeth typically erupt in the following order: (1) central incisor, (2) lateral incisor, (3) first molar, (4) canine, and (5) second molar. As a general rule, four teeth erupt for every six months of life, mandibular teeth erupt before maxillary teeth, and teeth erupt sooner in females than males. During primary dentition, the tooth buds of permanent teeth develop below the primary teeth, close to the palate or tongue.

Mixed dentition starts when the first permanent molar appears in the mouth, usually at six years, and lasts until the last primary tooth is lost, usually at eleven or twelve years. Permanent teeth in the maxilla erupt in a different order from permanent teeth on the mandible. Maxillary teeth erupt in the following order: (1) first molar (2) central incisor, (3) lateral incisor, (4) first premolar, (5) second premolar, (6) canine, (7) second molar, and (8) third molar. Mandibular teeth erupt in the following order: (1) first molar (2) central incisor, (3) lateral incisor, (4) canine, (5) first premolar, (6) second premolar, (7) second molar, and (8) third molar. Since there are no premolars in the primary dentition, the primary molars are replaced by permanent premolars. If any primary teeth are lost before permanent teeth are ready to replace them, some posterior teeth may drift forward and cause space to be lost in the mouth. This may cause crowding and/or misplacement once the permanent teeth erupt, which is usually referred to as malocclusion. Orthodontics may be required in such circumstances for an individual to achieve a straight set of teeth.

The permanent dentition begins when the last primary tooth is lost, usually at 11 to 12 years, and lasts for the rest of a person's life or until all of the teeth are lost (edentulism). During this stage, third molars (also called "wisdom teeth") are frequently extracted because of decay, pain or impactions. The main reasons for tooth loss are decay or periodontal disease.

Alveolar bone (process)

1. The bone in the jaws that contains the teeth alveoli (sockets).

2. Three types of bone :

a. Cribriform plate (alveolar bone proper)

(1) Directly lines and forms the tooth socket. It is compact bone that contains many holes, allowing for the passage of blood vessels. It has no periosteum.

(2) Serves as the attachment site for PDL (Sharpey’s) fibers.

(3) The tooth socket is constantly being remodeled in response to occlusal forces. The bone laid down on the cribriform plate, which also provides attachment for PDL fibers, is known as bundle bone.

(4) It is radiographically known as the lamina dura.

b. Cortical (compact) bone

(1) Lines the buccal and lingual surfaces of the mandible and maxilla.

(2) Is typical compact bone with a periosteum and contains Haversian systems.

(3) Is generally thinner in the maxilla and thicker in the mandible, especially around the buccal area of  the mandibular premolar and molar.

c. Trabecular (cancellous, spongy) bone

(1) Is typical cancellous bone containing Haversian systems.

(2) Is absent in the maxillary anterior teeth region.

 

3. Alveolar crest (septa)

a. The height of the alveolar crest is usually 1.5 to 2 mm below the CEJ junction.

b. The width is determined by the shape of adjacent teeth.

(1) Narrow crests—found between teeth with relatively flat surfaces.

(2) Widened crests—found between teeth with convex surfaces or teeth spaced apart.

Explore by Exams