NEET MDS Lessons
Dental Anatomy
Compensating curvatures of the individual teeth.
- the gentle curvature of the long axes of certain posterior teeth to exhibit a gentle curvature.
-These are probably analogous to the trabecular patterns seen in the femur and therefore reflect lines of stress experienced during function.
Posteruptive tooth movement.
These movements occur after eruption of the teeth into function in the oral cavity. These movements, known collectively as occlusomesial forces.
A. Continuous tooth eruption eruption of teeth after coming into occlusion. This process compensates for occlusal tooth wear.. Cementum deposition and progressive remodelling of the alveolar bone are the growth processes that provide for continuous tooth movement
B. Physiological mesial drift :Tthe tendency of permanent posterior teeth to migrate mesially in the dental arch both before and after they come into occlusion. Clinically, it compensates for proximal tooth wear.
(1) It describes the tendency of posterior teeth to move anteriorly.
(2) It applies to permanent teeth, not deciduous teeth.
(3) The distal tooth have the stronger is the tendency for drift.
(4) It compensates for proximal wear.
(5) In younger persons, teeth drift bodily; in older persons, they tip and rotate.
(6) Forces that cause it include occlusal forces, PDL contraction, and soft tissue pressures. There may be other more subtle factors as well.
Height of Epithelial Attachment
The height of normal gingival tissue . mesiallv and distallv on approximating teeth, is directly dependent upon the height of the epithelial attachment on these teeth. Normal attachment follows the curvature of the cementoenamel junction if the teeth are jn proper, alignment and contact.
FORMATION OF THE PERMANENT DENTITION
Twenty deciduous tooth buds are formed initially.
Proliferative activity of the dental lamina during the bell stage that leads to formation of permanent tooth buds (cap stage) lingual of each deciduous tooth germ.
Molars have no predecessors; they are formed by posterior proliferation of the dental lamina.
HARD TISSUE FORMATION
Hard tissue formation starts at the late stages of the bell stage.
Differentiatioin of cells into odontoblasts and ameloblasts.
The cells of the inner dental epithelium will become ameloblasts.
The cells of the dental papilla opposite to the inner dental epithelium will become odontoblasts.
Dentin is formed before enamel.
Dentin initiates the formation of enamel.
ROOT FORMATION
The root of the tooth is composed by dentin and cementum.
Dentinogenesis is initiated by the odontoblasts.
Odontoblasts are formed as epithelial cells continue to proliferate from the cervical loop as a double layer of cells known as Hertwig's root sheath.
TOOTH SHAPE
The shape of the crowns results from the interaction of inner dental epithelium and the dental papilla.
The cells of the inner dental epithelium have a programmed proliferation.
This internal program determines the tooth form.
The fate of the dental lamina
Rests of Serres
The rest of Serres are rests of the dental lamina identified in the gingival soft tissues.
They are round to ovoid aggregates of epithelial cells that have clear cytoplasm (glucogen rich).
They result from early breakup of the dental lamina during bell stage.
Rests of Malassez
The rests of Malassez result from breakup of the Hertwig's root sheath during root formation.
They can be identified in the periodontal ligament and are responsible for the development of radicular cysts.
MANDIBULAR SECOND BICUSPID
Facial: From this aspect, the tooth somewhat resembles the first, but the buccal cusp is less pronounced. The tooth is larger than the first.
Lingual: Two significant variations are seen in this view. The most common is the three-cusp form which has two lingual cusps. The mesial of those is the larger of the two. The other form is the two-cusp for with a single lingual cusp. In that variant, the lingual cusp tip is shifted to the mesial.
Proximal: The buccal cusp is shorter than the first. The lingual cusp (or cusps) are much better developed than the first and give the lingual a full, well-developed profile.
Occlusal: The two or three cusp versions become clearly evident. In the three-cusp version, the developmental grooves present a distinctive 'Y' shape and have a central pit. In the two cusp version, a single developmental groove crosses the transverse ridge from mesial to distal
Contact Points; Height of Curvature: From the facial, the mesial contact is more occlusal than the distal contact.The distal marginal ridge is lower than the mesial marginal ridge
Root Surface:-The root of the tooth is single, that is usually larger than that of the first premolar
the lower second premolar is larger than the first, while the upper first premolar is just slightly larger than the upper second
There may be one or two lingual cusps
ERUPTION
. Root completion (approximately 50% of the root is formed when eruption begins)
Generally mandibular teeth erupt before maxillary teeth,
Primary teeth
I. Emerge into the oral cavity as follows:
Maxillary Mandibular
Central Incisor 7½ months 6 months
Lateral incisor 9 months 7 months
Canine 18 months 16 months
First Molar 14 months 12 months
Second Molar 24months 20 months
The sequence of primary tooth development is central incisor, lateral incisor, first molar, second molar
3. Hard tissue formation begins between 4 and 6 months in utero
4. Crowns completed between 1½ and 10 months of age
5. Roots are completed between I½ and3 yearsof age 6 to 18 months after eruption
6. By age 3 years all of the primary and permanent teeth (except for the third molars) are in some stage of development
7. Root resorption of primary teeth is triggered by the pressure exerted by the developing permanent tooth; it is followed by primary tooth exfoliation in sequential patterns
8. The primary dentition ends when the first permanent tooth erupts
Age changes in the dentition
I. After the teeth have reached full occlusion, microscopic tooth movements occur to compensate for wear at the contact area (Mesial Drift) and occlusal surfaces (by Deposition of cementum at the root apex)
2. Attrition of incisal ridges and cusp tips may be so severe that dentin may become exposed and intrinsically stained
3. Secondary dentin may be formed in response to dental caries, trauma, and aging and result in decreased pulp size and tooth sensation
TOOTH MORPHOLOGY
Descriptive anatomy
- Median sagittal plane: the imaginary plane in the center that divides right from left.
- Median line: an imaginary line on that plane that bisects the dental arch at the center.
- Mesial: toward the center (median) line of the dental arch.
- Distal: away from the center (median) line of the dental arch.
- Occlusal plane: A plane formed by the cusps of the teeth. It is often curved, as in a cylinder. We will speak often of the occlusal surface of a tooth.
- Proximal: the surface of a tooth that is toward another tooth in the arch.
- Mesial surface: toward the midline.
- Distal surface: away from the midline.
- Facial: toward the cheeks or lips.
- Labial: facial surface of anterior teeth (toward the lips).
- Buccal: facial surfaceof anterior teeth (toward the cheeks).
- Lingual: toward the tongue.
- Occlusal: the biting surface; that surface that articulates with an antagonist tooth in an opposing arch.
- Incisal: cutting edge of anterior teeth.
- Apical: toward the apex, the tip of the root.
Enamel
Structural characteristics and microscopic features
a. Enamel rods or prisms
(1) Basic structural unit of enamel.
(2) Consists of tightly packed hydroxyapatite crystals. Hydroxyapatite crystals in enamel are four times larger and more tightly packed than hydroxyapatite found in other calcified
tissues (i.e., it is harder than bone).
(3) Each rod extends the entire thickness of enamel and is perpendicular to the dentinoenamel junction (DEJ).
b. Aprismatic enamel
(1) The thin outer layer of enamel found on the surface of newly erupted teeth.
(2) Consists of enamel crystals that are aligned perpendicular to the surface.
(3) It is aprismatic (i.e., prismless) and is more mineralized than the enamel beneath it.
(4) It results from the absence of Tomes processes on the ameloblasts during the final stages of enamel deposition.
c. Lines of Retzius (enamel striae)
(1) Microscopic features
(a) In longitudinal sections, they are observed as brown lines that extend from the DEJ to the
tooth surface.
(b) In transverse sections, they appear as dark, concentric rings similar to growth rings in a tree.
(2) The lines appear weekly during the formation of enamel.
(3) Although the cause of striae formation is unknown, the lines may represent appositional or incremental growth of enamel. They may also result from metabolic disturbances of ameloblasts.
(4) Neonatal line
(a) An accentuated, dark line of Retzius that results from the effect of physiological changes
on ameloblasts at birth.
(b) Found in all primary teeth and some cusps of permanent first molars.
d. Perikymata
(1) Lines of Retzius terminate on the tooth surface in shallow grooves known a perikymata.
(2) These grooves are usually lost through wear but may be observed on the surfaces of developing teeth or nonmasticatory surfaces of formed teeth.
e. Hunter-Schreger bands
(1) Enamel rods run in different directions. In longitudinal sections, these changes in direction result in a banding pattern known as HunterSchreger bands.
(2) These bands represent an optical phenomenon of enamel and consist of a series of alternating dark and light lines when the section is viewed with reflected or polarized
light.
f. Enamel tufts
(1) Consist of hypomineralized groups of enamel rods.
(2) They are observed as short, dark projections found near or at the DEJ.
(3) They have no known clinical significance.
g. Enamel lamellae
(1) Small, sheet-like cracks found on the surface of enamel that extend its entire thickness.
(2) Consist of hypocalcified enamel.
(3) The open crack may be filled with organic material from leftover enamel organ components, connective tissues of the developing tooth, or debris from the oral cavity.
(4) Both enamel tufts and lamellae may be likened to geological faults in mature enamel.
h. Enamel spindle
(1) Remnants of odontoblastic processes that become trapped after crossing the DEJ during the differentiation of ameloblasts.
(2) Spindles are more pronounced beneath the cusps or incisal edges of teeth (i.e., areas where occlusal stresses are the greatest).