NEET MDS Lessons
Dental Anatomy
Clinical importance of cementum
1) Deposition of cementum continues throughout life.
The effects of the continuous deposition of cementum are the maintenance of total length of the tooth (good) and constriction of the apical foramen (bad).
2) With age, the smooth surface of cementum becomes more irregular due to calcification of some ligament fiber bundles. This is referred to as spikes.
Behavior of cementum in pathologic conditions
MAXILLARY SECOND MOLAR
The second molars are often called 12-year molars because they erupt when a child is about 12 years
Facial: The crown is shorter occluso-cervically and narrower mesiodistally whe compared to the first molar. The distobuccal cusp is visibly smaller than the mesiobuccal cusp. The two buccal roots are more nearly parallel. The roots are more parallel; the apex of the mesial root is on line with the with the buccal developmental groove. Mesial and distal roots tend to be about the same length.
Lingual: The distolingual cusp is smaller than the mesiolingual cusp. The Carabelli trait is absent.
Proximal: The crown is shorter than the first molar and the palatal root has less diverence. The roots tend to remain within the crown profile.
Occlusal: The distolingual cusp is smaller on the second than on the first molar. When it is much reduced in size, the crown outline is described as 'heart-shaped.' The Carabelli trait is usually absent. The order of cusp size, largest to smallest, is the same as the first but is more exaggerated: mesiolingual, mesiobuccal, distobuccal, and distolingual.
Contact Points; Height of Curvature: Both mesial and distal contacts tend to be centered buccolingually below the marginal ridges. Since themolars become shorter, moving from first to this molar, the contacts tend to appear more toward the center of the proximal surfaces.
Roots: There are three roots, two buccal and one lingual. The roots are less divergent than the first with their apices usually falling within the crown profile. The buccal roots tend to incline to the distal.
Note: The distolingual cusp is the most variable feature of this tooth. When it is large, the occlusal is somewhat rhomboidal; when reduced in size the crown is described as triangual or 'heart-shaped.' At times, the root may be fused.
MANDIBULAR SECOND MOLAR
Facial: When compared to the first molar, the second molar crown is shorter both mesiodistally and from the cervix to the occlusal surface. The two well-developed buccal cusps form the occlusal outline. There is no distal cusp as on the first molar. A buccal developmental groove appears between the buccal cusps and passes midway down the buccal surface toward the cervix.
Lingual: The crown is shorter than that of the first molar. The occlusal outline is formed by the mesiolingual and distolingal cusps.
Proximal: The mesial profile resembles that of the first molar. The distal profile is formed by the distobuccal cusp, distal marginal ridge, and the distolingual cusp. Unlike the first molar, there is no distal fifth cusp.
Occlusal: There are four well developed cusps with developmental grooves that meet at a right angle to form the distinctive "+" pattern characteristic of this tooth.
Contact Points; When moving distally from first to third molar, the proximal surfaces become progressively more rounded. The net effect is to displace the contact area cervically and away from the crest of the marginal ridges.
Roots:-The mandibular second molar has two roots that are smaller than those of the first molar. When compared to first molar roots, those of the second tend to be more parallel and to have a more distal inclination.
CEMENTUM vs. BONE
Cementum simulates bone
1) Organic fibrous framework, ground substance, crystal type, development
2) Lacunae
3) Canaliculi
4) Cellular components
5) Incremental lines (also known as "resting" lines; they are produced by continuous but phasic, deposition of cementum)
Differences between cementum and bone
1) Cementum is not vascularized
2) Cementum has minor ability to remodel
3) Cementum is more resistant to resorption compared to bone
4) Cementum lacks neural component
5) Cementum contains a unique proteoglycan interfibrillar substance
6) 70% of bone is made by inorganic salts (cementum only 46%)
Relation of Cementum to Enamel at the Cementoenamel Junction (CEJ)
"OMG rule"
In 60% of the teeth cementum Overlaps enamel
In 30% of the teeth cementum just Meets enamel
In 10% of the teeth there is a small Gap between cementum and enamel
Periodontal ligament development
Cells from the dental follicle give rise to the periodontal ligaments (PDL).
Formation of the periodontal ligaments begins with ligament fibroblasts from the dental follicle. These fibroblasts secrete collagen, which interacts with fibers on the surfaces of adjacent bone and cementum. This interaction leads to an attachment that develops as the tooth erupts into the mouth. The occlusion, which is the arrangement of teeth and how teeth in opposite arches come in contact with one another, continually affects the formation of periodontal ligaments. This perpetual creation of periodontal ligaments leads to the formation of groups of fibers in different orientations, such as horizontal and oblique fibers.
Soft Oral Tissues
Oral Mucosa
The oral mucosa consists mainly of two types of tissues: the oral epithelium, which consists of stratified, squamous epithelium, and the underlying connective tissue layer, known as the lamina propria. There are three variations of oral mucosa.
A. Oral epithelium
1. Consists of stratified, squamous epithelium.
2. Four layers (Note: Cells mature as they progress from the deepest [basal] layer to the most superficial [cornified] layer) a. Basal layer (stratum germinativum or basale)
(1) A single layer of cuboidal or columnar cells overlying the lamina propria.
(2) Contains progenitor cells and thus provides cells to the epithelial layers above.
(3) Site of cell division (mitosis).
b. Prickle cell layer (stratum spinosum)
(1) Consists of several layers of larger, ovoid-shaped cells.
c. Granular layer (stratum granulosum)
(1) Cells appear larger and flattened.
(2) Granules (known as keratohyaline granules) are present in the cells.
(3) This layer is absent in nonkeratinized epithelium.
d. Cornified layer (stratum corneum, keratin, or horny layer)
(1) In keratinized epithelium:
(a) Orthokeratinized epithelium the squamous cells on the surface appear flat and contain keratin. They have no nuclei present.
(b) Parakeratinized epithelium the squamous cells appear flat and contain keratin; nuclei are present within the cells.
(2) In parakeratinized epithelium, both squamous cells without nuclei and cells with shriveled (pyknotic) nuclei are present.
(3) In nonkeratinized epithelium, the cells appear slightly flattened and contain nuclei.
B. Lamina propria
1. Consists of type I and III collagen, elastic fibers, and ground substance. It also contains many cell types, including fibroblasts, endothelial cells, immune cells, and a rich vascular and nerve supply.
2. Two layers:
a. Superficial, papillary layer
(1) Located around and between the epithelial ridges.
(2) Collagen fibers are thin and loosely arranged.
b. Reticular layer
(1) Located beneath the papillary layer.
(2) Collagen fibers are organized in thick, parallel bundles.
C. Types of oral mucosa
1. Masticatory mucosa
a. Found in areas that have to withstand compressive and shear forces.
b. Clinically, it has a rubbery, firm texture.
c. Regions: gingiva, hard palate.
2. Lining mucosa
a. Found in areas that are exposed to high levels of friction, but must also be mobile and distensible.
b. Clinically, it has a softer, more elastic texture.
c. Regions: alveolar mucosa, buccal mucosa, lips, floor of the mouth, ventral side of the tongue, and soft palate.
3. Specialized mucosa
a. Similar to masticatory mucosa, specialized mucosa is able to tolerate high compressive
and shear forces; however, it is unique in that it forms lingual papillae.
b. Region: dorsum of the tongue.
D. Submucosa
1. The connective tissue found beneath the mucosa . It contains blood vessels and nerves and may also contain fatty tissue and minor salivary glands.
2. Submucosa is not present in all regions of the oral cavity, such as attached gingiva, the tongue, and hard palate. Its presence tends to increase the mobility of the tissue overlying it.
E. Gingiva
1. The portion of oral mucosa that attaches to the teeth and alveolar bone.
2. There are two types of gingiva: attached and free gingiva. The boundary at which they meet is known as the free gingival groove .
a. Attached gingiva
(1) Directly binds to the alveolar bone and tooth.
(2) It extends from the free gingival groove to the mucogingival junction.
b. Free gingiva
(1) Coronal to the attached gingiva, it is not bound to any hard tissue.
(2) It extends from the gingival margin to the free gingival groove.
c. Together, the free and attached gingiva form the interdental papilla.
.F. Alveolar mucosa
1. The tissue just apical to the attached gingiva.
2. The alveolar mucosa and attached gingiva meet at the mucogingival junction .
G. Junctional epithelium
1. Area where the oral mucosa attaches to the tooth, forming the principal seal between the oral cavity and underlying tissues.
2. Is unique in that it consists of two basal lamina, an internal and external . The internal basal lamina, along with hemidesmosomes, comprises the attachment apparatus (the epithelial attachment). This serves to attach the epithelium directly to the tooth.
3. Histologically, it remains as immature, poorly differentiated tissue. This allows it to maintain its ability to develop hemidesmosomal attachments.
4. Has the highest rate of cell turnover of any oral mucosal tissue.
H. Interdental papilla (interdental gingiva)
1. Occupies the interproximal space between two teeth. It is formed by free and attached gingiva.
2. Functions to prevent food from entering the (interproximal) area beneath the contact point of two adjacent teeth. It therefore plays an important role in maintaining the health of the gingiva.
3. Col
a. If the interdental papilla is cross-sectioned in a buccolingual plane, it would show two peaks (buccal and lingual) with a dip between them, known as the col or interdental col. This depression occurs around the contact point of the two adjacent teeth.
b. Histologically, col epithelium is the same as junctional epithelium
Tooth eruption Theories
Tooth eruption occurs when the teeth enter the mouth and become visible. Although researchers agree that tooth eruption is a complex process, there is little agreement on the identity of the mechanism that controls eruption. Some commonly held theories that have been disproven over time include: (1) the tooth is pushed upward into the mouth by the growth of the tooth's root, (2) the tooth is pushed upward by the growth of the bone around the tooth, (3) the tooth is pushed upward by vascular pressure, and (4) the tooth is pushed upward by the cushioned hammock. The cushioned hammock theory, first proposed by Harry Sicher, was taught widely from the 1930s to the 1950s. This theory postulated that a ligament below a tooth, which Sicher observed on under a microscope on a histologic slide, was responsible for eruption. Later, the "ligament" Sicher observed was determined to be merely an artifact created in the process of preparing the slide.
The most widely held current theory is that while several forces might be involved in eruption, the periodontal ligaments provide the main impetus for the process. Theorists hypothesize that the periodontal ligaments promote eruption through the shrinking and cross-linking of their collagen fibers and the contraction of their fibroblasts.
Although tooth eruption occurs at different times for different people, a general eruption timeline exists. Typically, humans have 20 primary (baby) teeth and 32 permanent teeth. Tooth eruption has three stages. The first, known as deciduous dentition stage, occurs when only primary teeth are visible. Once the first permanent tooth erupts into the mouth, the teeth are in the mixed (or transitional) dentition. After the last primary tooth falls out of the mouth—a process known as exfoliation—the teeth are in the permanent dentition.
Primary dentition starts on the arrival of the mandibular central incisors, usually at eight months, and lasts until the first permanent molars appear in the mouth, usually at six years. The primary teeth typically erupt in the following order: (1) central incisor, (2) lateral incisor, (3) first molar, (4) canine, and (5) second molar. As a general rule, four teeth erupt for every six months of life, mandibular teeth erupt before maxillary teeth, and teeth erupt sooner in females than males. During primary dentition, the tooth buds of permanent teeth develop below the primary teeth, close to the palate or tongue.
Mixed dentition starts when the first permanent molar appears in the mouth, usually at six years, and lasts until the last primary tooth is lost, usually at eleven or twelve years. Permanent teeth in the maxilla erupt in a different order from permanent teeth on the mandible. Maxillary teeth erupt in the following order: (1) first molar (2) central incisor, (3) lateral incisor, (4) first premolar, (5) second premolar, (6) canine, (7) second molar, and (8) third molar. Mandibular teeth erupt in the following order: (1) first molar (2) central incisor, (3) lateral incisor, (4) canine, (5) first premolar, (6) second premolar, (7) second molar, and (8) third molar. Since there are no premolars in the primary dentition, the primary molars are replaced by permanent premolars. If any primary teeth are lost before permanent teeth are ready to replace them, some posterior teeth may drift forward and cause space to be lost in the mouth. This may cause crowding and/or misplacement once the permanent teeth erupt, which is usually referred to as malocclusion. Orthodontics may be required in such circumstances for an individual to achieve a straight set of teeth.
The permanent dentition begins when the last primary tooth is lost, usually at 11 to 12 years, and lasts for the rest of a person's life or until all of the teeth are lost (edentulism). During this stage, third molars (also called "wisdom teeth") are frequently extracted because of decay, pain or impactions. The main reasons for tooth loss are decay or periodontal disease.