Talk to us?

Dental Anatomy - NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Maxillary First Deciduous Molar.

-The notation is B or I.

-It looks a bit like an upper 1st premolar.

-There are three roots.

-It has a strong bulbous enamel bulge that protrudes buccally at the mesial.

-It is the smallest of the deciduous molars in crown height and in the mesiodistal dimension.

AGE CHANGES

Progressive apical migration of the dentogingival junction.
Toothbrush abrasion of the area can expose dentin that can cause root caries and tooth mobility.

Histology of the alveolar bone

 

Near the end of the 2nd month of fetal life, mandible and maxilla form a groove that is opened toward the surface of the oral cavity.
As tooth germs start to develop, bony septa form gradually. The alveolar process starts developing strictly during tooth eruption.

The alveolar process is the bone that contains the sockets (alveoli) for the teeth and consists of

a) outer cortical plates
b) a central spongiosa and
c) bone lining the alveolus (bundle bone)

The alveolar crest is found 1.5-2.0 mm below the level of the CEJ.
If you draw a line connecting the CE junctions of adjacent teeth, this line should be parallel to the alveolar crest. If the line is not parallel, then there is high probability of periodontal disease.

Bundle Bone

The bundle bone provides attachment to the periodontal ligament fibers. It is perforated by many foramina that transmit nerves and vessels (cribiform plate). Embedded within the bone are the extrinsic fiber bundles of the PDL mineralized only at the periphery. Radiographically, the bundle bone is the lamina dura. The lining of the alveolus is fairly smooth in the young but rougher in the adults.

Clinical considerations

Resorption and regeneration of alveolar bone
This process can occur during orthodontic movement of teeth. Bone is resorbed on the side of pressure and opposed on the site of tension.

Osteoporosis
Osteoporosis of the alveolar process can be caused by inactivity of tooth that does not have an antagonist

Dental Formula, Dental Notation, Universal Numbering System

A. Dental Formula. The dental formula expresses the type and number of teeth per side

The Universal Numbering System. The rules are as follows:

1. Permanent teeth are designated by number, beginning with the last tooth on the upper right side, going on to the last tooth on the left side, then lower left to lower right

2. Deciduous teeth are designated by letter, beginning with the last tooth on the upper right side and proceeding in clockwise fashion

MAXILLARY FIRST BICUSPID (PREMOLARS)

It is considered to be the typical bicuspid. (The word "bicuspid" means "having two cusps.")

Facial: The buccal surface is quite rounded and this tooth resembles the maxillary canine. The buccal cusp is long; from that cusp tip, the prominent buccal ridge descends to the cervical line of the tooth.

Lingual: The lingual cusp is smaller and the tip of that cusp is shifted toward the mesial. The lingual surface is rounded in all aspects.

Proximal: The mesial aspect of this tooth has a distinctive concavity in the cervical third that extends onto the root. It is called variously the mesial developmental depression, mesial concavity, or the 'canine fossa'--a misleading description since it is on the premolar. The distal aspect of the maxillary first permanent molar also has a developmental depression. The mesial marginal developmental groove is a distinctive feature of this tooth.

Occlusal: There are two well-defined cusps buccal and lingual. The larger cusp is the buccal; its cusp tip is located midway mesiodistally. The lingual cusp tip is shifted mesially. The occlusal outline presents a hexagonal appearance. On the mesial marginal ridge is a distinctive feature, the mesial marginal developmental groove.

Contact Points;The distal contact area is located more buccal than is the mesial contact area.

Root Surface:-The root is quite flat on the mesial and distal surfaces. In about 50 percent of maxillary first bicuspids, the root is divided in the apical third, and when it so divided, the tips of the facial and lingual roots are slender and finely tapered.

Cementum

Composition

a. Inorganic (50%)—calcium hydroxyapatite crystals.

b. Organic (50%)—water, proteins, and type I collagen.

c. Note: Compared to the other dental tissues, the composition of cementum is most similar to bone; however, unlike bone, cementum is avascular (i.e., no Haversian systems or other vessels are present).


Main function of cementum is to attach PDL fibers to the root surface.

Cementum is generally thickest at the root apex and in interradicular areas of multirooted 

Types of cementum

a. Acellular (primary) cementum

(1) A thin layer of cementum that surrounds the root, adjacent to the dentin.

(2) May be covered by a layer of cellular cementum, which most often occurs in the middle and apical root.

(3) It does not contain any cells.

 

b. Cellular (secondary) cementum

(1) A thicker, less-mineralized layer of cementum that is most prevalent along the apical root and in interradicular (furcal) areas of multirooted teeth.

(2) Contains cementocytes.

(3) Lacunae and canaliculi:

(a) Cementocytes (cementoblasts that become trapped in the extracellular matrix during cementogenesis) are observed in their entrapped spaces, known as lacunae.

(b) The processes of cementocytes extend through narrow channels called canaliculi.

(4) Microscopically, the best way to differentiate between acellular and cellular cementum is the presence of lacunae in cellular cementum.

INNERVATION OF THE DENTIN-PULP COMPLEX

  1. Dentine Pulp
  2. Dentin
  3. Nerve Fibre Bundle
  4. Nerve fibres

The nerve bundles entering the tooth pulp consist principally of sensory afferent fibers from the trigeminal nerve and sympathetic branches from the superior cervical ganglion. There are non-myelinated (C fibers) and myelinated (less than non, A-delta, A-beta) fibers. Some nerve endings terminate on or in association with the odontoblasts and others in the predentinal tubules of the crown. Few fibers are found among odontoblasts of the root.
In the cell-free zone one can find the plexus of Raschkow.

Introduction. The Jaws and Dental Arches

 

The teeth are arranged in upper and lower arches. Those of the upper are called maxillary; those of the lower are mandibular.

 

  1. The maxilla is actually two bones forming the upper jaw; they are rigidly attached to the skull..
  2. The mandible is a horseshoe shaped bone which articulates with the skull by way of the temporomandibular joint the TMJ.
  3. The dental arches, the individual row of teeth forming a tooth row attached to their respective jaw bones have a distinctive shape known as a catenary arch.

Explore by Exams