Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Tooth eruption Theories

Tooth eruption occurs when the teeth enter the mouth and become visible. Although researchers agree that tooth eruption is a complex process, there is little agreement on the identity of the mechanism that controls eruption. Some commonly held theories that have been disproven over time include: (1) the tooth is pushed upward into the mouth by the growth of the tooth's root, (2) the tooth is pushed upward by the growth of the bone around the tooth, (3) the tooth is pushed upward by vascular pressure, and (4) the tooth is pushed upward by the cushioned hammock. The cushioned hammock theory, first proposed by Harry Sicher, was taught widely from the 1930s to the 1950s. This theory postulated that a ligament below a tooth, which Sicher observed on under a microscope on a histologic slide, was responsible for eruption. Later, the "ligament" Sicher observed was determined to be merely an artifact created in the process of preparing the slide.

The most widely held current theory is that while several forces might be involved in eruption, the periodontal ligaments provide the main impetus for the process. Theorists hypothesize that the periodontal ligaments promote eruption through the shrinking and cross-linking of their collagen fibers and the contraction of their fibroblasts.

Although tooth eruption occurs at different times for different people, a general eruption timeline exists. Typically, humans have 20 primary (baby) teeth and 32 permanent teeth. Tooth eruption has three stages. The first, known as deciduous dentition stage, occurs when only primary teeth are visible. Once the first permanent tooth erupts into the mouth, the teeth are in the mixed (or transitional) dentition. After the last primary tooth falls out of the mouth—a process known as exfoliation—the teeth are in the permanent dentition.

Primary dentition starts on the arrival of the mandibular central incisors, usually at eight months, and lasts until the first permanent molars appear in the mouth, usually at six years. The primary teeth typically erupt in the following order: (1) central incisor, (2) lateral incisor, (3) first molar, (4) canine, and (5) second molar. As a general rule, four teeth erupt for every six months of life, mandibular teeth erupt before maxillary teeth, and teeth erupt sooner in females than males. During primary dentition, the tooth buds of permanent teeth develop below the primary teeth, close to the palate or tongue.

Mixed dentition starts when the first permanent molar appears in the mouth, usually at six years, and lasts until the last primary tooth is lost, usually at eleven or twelve years. Permanent teeth in the maxilla erupt in a different order from permanent teeth on the mandible. Maxillary teeth erupt in the following order: (1) first molar (2) central incisor, (3) lateral incisor, (4) first premolar, (5) second premolar, (6) canine, (7) second molar, and (8) third molar. Mandibular teeth erupt in the following order: (1) first molar (2) central incisor, (3) lateral incisor, (4) canine, (5) first premolar, (6) second premolar, (7) second molar, and (8) third molar. Since there are no premolars in the primary dentition, the primary molars are replaced by permanent premolars. If any primary teeth are lost before permanent teeth are ready to replace them, some posterior teeth may drift forward and cause space to be lost in the mouth. This may cause crowding and/or misplacement once the permanent teeth erupt, which is usually referred to as malocclusion. Orthodontics may be required in such circumstances for an individual to achieve a straight set of teeth.

The permanent dentition begins when the last primary tooth is lost, usually at 11 to 12 years, and lasts for the rest of a person's life or until all of the teeth are lost (edentulism). During this stage, third molars (also called "wisdom teeth") are frequently extracted because of decay, pain or impactions. The main reasons for tooth loss are decay or periodontal disease.

Embryonic development

The parotid derives from ectoderm
The sublingual-submandibular glands thought to derive from endoderm
Differentiation of the ectomesenchyme
Development of fibrous capsule
Formation of septa that divide the gland into lobes and lobules
The parotid develops around 4-6 weeks of embryonic lofe
The submandibular gland develops around the 6th week
The sublingual and the minor glands develop around the 8-12 week

Maxillary Second Deciduous Molar.

-The notation is A or J.

-It looks like a first permanent molar

-There are three roots.

-Usually it has four well developed cusps.

-It is somwhat rhomboidal in outline.

-They often have the Carabelli trait.

- the shape the maxillary first permanent molar strongly resembles that of the adjacent deciduous second molar.

Tooth development is commonly divided into the following stages: the bud stage, the cap, the bell, and finally maturation. The staging of tooth development is an attempt to categorize changes that take place along a continuum; frequently it is difficult to decide what stage should be assigned to a particular developing tooth. This determination is further complicated by the varying appearance of different histological sections of the same developing tooth, which can appear to be different stages.

Bud stage

The bud stage is characterized by the appearance of a tooth bud without a clear arrangement of cells. The stage technically begins once epithelial cells proliferate into the ectomesenchyme of the jaw. The tooth bud itself is the group of cells at the end of the dental lamina.

The Transition from the Deciduous to the Permanent Dentition.

1. The transition begins with the eruption of the four first permanent molars, and replacement of the lower deciduous central incisors by the permanent lower central incisors.

2. Complete resorption of the deciduous tooth roots permits exfoliation of that tooth and replacement by the permanent (successional) teeth

3. The mixed dentition exists from approximately age 6 years to approximately age 12 years. In contrast, the intact deciduous dentition is functional from age 2 - 2 /2 years of age to 6 years of age.

4. The enamel organ of each permanent anterior tooth is connected to the oral epithelium via a fibrous cord, the gubernaculum. The foramina through which it passes can be seen in youthful skulls

The deciduous second molars are particularly important. It is imperative that the deciduous second molars be preserved until their normal time of exfoliation. This prevent mesial migration of the first permanent molars.

Use a space maintainer in the event that a second deciduous molar is lost prematurely

Nutrition and tooth development

As in other aspects of human growth and development, nutrition has an effect on the developing tooth. Essential nutrients for a healthy tooth include calcium, phosphorus, fluoride, and vitamins A, C, and D. Calcium and phosphorus are needed to properly form the hydroxyapatite crystals, and their levels in the blood are maintained by Vitamin D. Vitamin A is necessary for the formation of keratin, as Vitamin C is for collagen. Fluoride is incorporated into the hydroxyapatite crystal of a developing tooth and makes it more resistant to demineralization and subsequent decay.

Deficiencies of these nutrients can have a wide range of effects on tooth development. In situations where calcium, phosphorus, and vitamin D are deficient, the hard structures of a tooth may be less mineralized. A lack of vitamin A can cause a reduction in the amount of enamel formation. Fluoride deficency causes increased demineralization when the tooth is exposed to an acidic environment, and also delays remineralization. Furthermore, an excess of fluoride while a tooth is in development can lead to a condition known as fluorosis.

Stationary Relationship

a) .Centric Relation is the most superior relationship of the condyle of the mandible to the articular fossa of the temporal bone as determined by the bones ligaments. and muscles of the temporomandibular joint; in an ideal dentition it is the same as centric occlusion.

(b) Canines may also be used to confirm the molar relationships to classify occlusion when molars are missing; a class I canine relationship shows the cusp tip of the maxillary canine facial to the mesiobuccal cusp of the first permanent molar

c) Second primary molars are used to classify the occlusion in a primary dentition

(d) In a mixed  dentition the first permanent molars will erupt into a normal occlusion if there is a terminal step between the distal  surfaces of maxillarv and mandibular second primary molars; if these surfaces are flush, a terminal plane exists and the first permanent molars will first erupt into an end-to-end relationship until there is a shifting of space or exfoliation of the second primary molar

Explore by Exams