Talk to us?

Dental Anatomy - NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

The mixed dentition

I. Transition dentition between 6 and 12 years of age with primary tooth exfoliation and permanent tooth eruption

2. Its characteristic features have led this to be called the ugly duckling stage because of

a. Edentulated areas

b. Disproportionately sized teeth

c. Various clinical crown heights

d. Crowding

e. Enlarged and edematous gingiva

f. Different tooth colors

Tooth eruption Theories

Tooth eruption occurs when the teeth enter the mouth and become visible. Although researchers agree that tooth eruption is a complex process, there is little agreement on the identity of the mechanism that controls eruption. Some commonly held theories that have been disproven over time include: (1) the tooth is pushed upward into the mouth by the growth of the tooth's root, (2) the tooth is pushed upward by the growth of the bone around the tooth, (3) the tooth is pushed upward by vascular pressure, and (4) the tooth is pushed upward by the cushioned hammock. The cushioned hammock theory, first proposed by Harry Sicher, was taught widely from the 1930s to the 1950s. This theory postulated that a ligament below a tooth, which Sicher observed on under a microscope on a histologic slide, was responsible for eruption. Later, the "ligament" Sicher observed was determined to be merely an artifact created in the process of preparing the slide.

The most widely held current theory is that while several forces might be involved in eruption, the periodontal ligaments provide the main impetus for the process. Theorists hypothesize that the periodontal ligaments promote eruption through the shrinking and cross-linking of their collagen fibers and the contraction of their fibroblasts.

Although tooth eruption occurs at different times for different people, a general eruption timeline exists. Typically, humans have 20 primary (baby) teeth and 32 permanent teeth. Tooth eruption has three stages. The first, known as deciduous dentition stage, occurs when only primary teeth are visible. Once the first permanent tooth erupts into the mouth, the teeth are in the mixed (or transitional) dentition. After the last primary tooth falls out of the mouth—a process known as exfoliation—the teeth are in the permanent dentition.

Primary dentition starts on the arrival of the mandibular central incisors, usually at eight months, and lasts until the first permanent molars appear in the mouth, usually at six years. The primary teeth typically erupt in the following order: (1) central incisor, (2) lateral incisor, (3) first molar, (4) canine, and (5) second molar. As a general rule, four teeth erupt for every six months of life, mandibular teeth erupt before maxillary teeth, and teeth erupt sooner in females than males. During primary dentition, the tooth buds of permanent teeth develop below the primary teeth, close to the palate or tongue.

Mixed dentition starts when the first permanent molar appears in the mouth, usually at six years, and lasts until the last primary tooth is lost, usually at eleven or twelve years. Permanent teeth in the maxilla erupt in a different order from permanent teeth on the mandible. Maxillary teeth erupt in the following order: (1) first molar (2) central incisor, (3) lateral incisor, (4) first premolar, (5) second premolar, (6) canine, (7) second molar, and (8) third molar. Mandibular teeth erupt in the following order: (1) first molar (2) central incisor, (3) lateral incisor, (4) canine, (5) first premolar, (6) second premolar, (7) second molar, and (8) third molar. Since there are no premolars in the primary dentition, the primary molars are replaced by permanent premolars. If any primary teeth are lost before permanent teeth are ready to replace them, some posterior teeth may drift forward and cause space to be lost in the mouth. This may cause crowding and/or misplacement once the permanent teeth erupt, which is usually referred to as malocclusion. Orthodontics may be required in such circumstances for an individual to achieve a straight set of teeth.

The permanent dentition begins when the last primary tooth is lost, usually at 11 to 12 years, and lasts for the rest of a person's life or until all of the teeth are lost (edentulism). During this stage, third molars (also called "wisdom teeth") are frequently extracted because of decay, pain or impactions. The main reasons for tooth loss are decay or periodontal disease.

Time for tooth development

Entire primary dentition initiated between 6 and 8 weeks of embryonic development.
Successional permanent teeth initiated between 20th week in utero and 10th month after birth Permanent molars between 20th week in utero (first molar) and 5th year of life (third molar)

Histology of the Periodontal Ligament (PDL)

Embryogenesis of the periodontal ligament
The PDL forms from the dental follicle shortly after root development begins
The periodontal ligament is characterized by connective tissue. The thinnest portion is at the middle third of the root. Its width decreases with age. It is a tissue with a high turnover rate.

FUNCTIONS OF PERIODONTIUM

Tooth support
Shock absorber
Sensory (vibrations appreciated in the middle ear/reflex jaw opening)

The following cells can be identified in the periodontal ligament:
a) Osteoblasts and osteoclasts b) Fibroblasts,  c) Epithelial cells
 

Rests of Malassez
d) Macrophages
e) Undifferentiated cells
f) Cementoblasts and cementoclasts (only in pathologic conditions)
The following types of fibers are found in the PDL
-Collagen fibers: groups of fibers
-Oxytalan fibers: variant of elastic fibers, perpendicular to teeth, adjacent to capillaries
-Eluanin: variant of elastic fibers
Ground substance

PERIODONTAL LIGAMENT FIBERS

Principal fibers
These fibers connect the cementum to the alveolar crest. These are:

a. Alveolar crest group: below CE junction, downward, outward
b. Horizontal group: apical to ACG, right angle
c. Oblique group: numerous, coronally to bone, oblique direction
d. Apical group: around the apex, base of socket
e. Interradicular group: multirooted teeth

Gingival ligament fibers
This group is not strictly related to periodontium. These fibers are:

a. Dentogingival: numerous, cervical cementum to f/a gingiva
b. Alveologingival: bone to f/a gingiva
c. Circular: around neck of teeth, free gingiva
d. Dentoperiosteal: cementum to alv. process or vestibule (muscle)
 e. Transseptal: cementum between adjacent teeth, over the alveolar crest
 

Blood supply of the PDL
The PDL gets its blood supply from perforating arteries (from the cribriform plate of the bundle bone). The small capillaries derive from the superior & inferior alveolar arteries. The blood supply is rich because the PDL has a very high turnover as a tissue. The posterior supply is more prominent than the anterior. The mandibular is more prominent than the maxillary.

Nerve supply
The nerve supply originates from the inferior or the superior alveolar nerves. The fibers enter from the apical region and lateral socket walls. The apical region contains more nerve endings (except Upper Incisors)

Dentogingival junction

This area contains the gingival sulcus. The normal depth of the sulcus is 0.5 to 3.0 mm (mean: 1.8 mm). Depth > 3.0 mm is considered pathologic. The sulcus contains the crevicular fluid
 

 
The dentogingival junction is surfaced by:
1) Gingival epithelium: stratified squamous keratinized epithelium 2) Sulcular epithelium: stratified squamous non-keratinized epithelium The lack of keratinization is probably due to inflammation and due to high turnover of this epithelium.
3) Junctional epithelium: flattened epithelial cells with widened intercellular spaces. In the epithelium one identifies neutrophils and monocytes.
Connective tissue
The connective tissue of the dentogingival junction contains inflammatory cells, especially polymorphonuclear neutrophils. These cells migrate to the sulcular and junctional epithelium.
The connective tissue that supports the sulcular epithelium is also structurally and functionally different than the connective tissue that supports the junctional epithelium.

Histology of the Col (=depression)

The col is found in the interdental gingiva. It is surfaced by epithelium that is identical to junctional epithelium. It is an important area because of the accumulation of bacteria, food debris and plaque that can cause periodontal disease.
Blood supply: periosteal vessels
Nerve supply: periodontal nerve fibers, infraorbital, palatine, lingual, mental, buccal

Mandibular First Deciduous Molar

-This tooth doesn't resemble any other tooth. It is unique unto itself.

-There are two roots.

-There is a strong bulbous enamel bulge buccally at the mesial.

- the mesiolingual cusps on this tooth is the highest and largest of the cusps.

 

Maxillary (upper) teeth

Permanent teeth

Central
incisor

Lateral
incisor


Canine

First
premolar

Second
premolar

First
molar

Second
molar

Third
molar

Initial calcification

3–4 mo

10–12 mo

4–5 mo

1.5–1.75 yr

2–2.25 yr

at birth

2.5–3 yr

7–9 yr

Crown completed

4–5 yr

4–5 yr

6–7 yr

5–6 yr

6–7 yr

2.5–3 yr

7–8 yr

12–16 yr

Root completed

10 yr

11 yr

13–15 yr

12–13 yr

12–14 yr

9–10 yr

14–16 yr

18–25 yr

 

 Mandibular (lower) teeth 

Initial calcification

3–4 mo

3–4 mo

4–5 mo

1.5–2 yr

2.25–2.5 yr

at birth

2.5–3 yr

8–10 yr

Crown completed

4–5 yr

4–5 yr

6–7 yr

5–6 yr

6–7 yr

2.5–3 yr

7–8 yr

12–16 yr

Root completed

9 yr

10 yr

12–14 yr

12–13 yr

13–14 yr

9–10 yr

14–15 yr

18–25 yr

Embryonic development

The parotid derives from ectoderm
The sublingual-submandibular glands thought to derive from endoderm
Differentiation of the ectomesenchyme
Development of fibrous capsule
Formation of septa that divide the gland into lobes and lobules
The parotid develops around 4-6 weeks of embryonic lofe
The submandibular gland develops around the 6th week
The sublingual and the minor glands develop around the 8-12 week

Explore by Exams