Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

PULP

Coronal

Occupies and resembles the crown,

Contains the pulp horns

It decreases in size with age

Radicular

Occupies roots

Contains the apical foramen

It decreases in size with age

Accessory apical canals

PULP FUNCTIONS

Inductive: The pulp anlage initiates tooth formation and probably induces the dental organ to become a particular type of tooth.

Formative: Pulp odontoblasts develop the organic matrix and function in its calcification.

Nutritive: Nourishment of dentin through the odontoblasts.

Protective: Sensory nerves in the tooth respond almost always with PAIN to all stimuli (heat, cold, pressure, operative procedures, chamical agents).

Defensive or reparative: It responds to irritation by producing reparative dentin. The response to stimuli is inflammation.

 Histologically the pulp consists of delicate collagen fibers, blood vessels, lymphatics, nerves and cells. A histologic section of the pulp reveals four cellular zones:

Odontoblastic

Cell-free (Weil)

Cell-rich

Pulp core

ERUPTION OF THE PERMANENT TOOTH

- At the time at which the deciduous tooth erupts the tooth bud for the permanent tooth has already been building up enamel and dentin.

- When the permanent tooth starts to erupt, pressure on the root of the deciduous tooth causes resorption by the osteoclasts.

- Wolff's law states that when two hard tissues exert pressure on one another the softer of the tissues will be resorbed.

- The dentin and cementum of the root of the deciduous tooth is softer than the enamel of the permanent tooth that is why the root of the deciduous tooth is resorbed.

- Most permanent teeth have erupted and have been in use for 2 years before the root is completely formed.

Dentin

Composition: 70% inorganic, 20% organic, 10% water by weight and 45%, 33%, and 22% in volume respectively
Hydroxyapatite crystals and collagen type I
Physical characteristics: Harder than bone and softer than enamel
Yellow in color in normal teeth
Radiographic appearance: More radiolucent than enamel

Primary (circumpulpal) dentin: forms most of the tooth
Mantle dentin: first dentin to form; forms the outline of dentin in the adult tooth
Predentin: lines the innermost portion of dentin (faces the pulp)
Secondary dentin: after root formation dentin continues to form, continuous to primary dentin but with structural irregularities
Tertiary dentin: reactive or reparative dentin; may or may not have characteristics of primary dentin; produced in the area of an external stimulus; osteodentin

Dentin is formed by cells called odontoblasts.
These cells derive from the ectomesenchyme and produce the organic matrix that will calcify and become the dentin.
Formation of dentin initiates formation of enamel.
The formation of dentin starts during late bell-stage in the area of the future cusp.

First coronal dentin and then root dentin.

Completion of dentin does not occur until about 18 months after eruption of primary and 2-3 years after eruption of permanent teeth.

The rate of dentin development varies.

The role of the internal (inner) dental (enamel) epithelium
Cuboidal - Columnar (reverse polarization)
Ectomesenchymal cells of the dental papilla become preodontoblasts - odontoblasts
Acellular zone disappears

Histologic features of dentin
Odontoblasts
Dentinal tubules
Extend through the entire thickness of dentin
S-shaped (primary curvatures) path in the crown, less S-shaped in the root, almost straight in the cervical aspect
Secondary curvatures
Tubular microbranches
Presence of fluid
 

Intratubular dentin
Dentin in the tubule that is hypermineralized

The term peritubular dentin should not be used
 

Sclerotic dentin
Dentinal tubules that are occluded with calcified material
Most likely a physiologic response
Reduction of permeability of dentin
 

Intertubular dentin
Dentin between the tubules
 

Interglobular dentin
Areas of unmineralized or hypomineralized dentin
The defect affects mineralization and not the architecture of dentin
 

Incremental lines
Lines of von Ebner: lines associated with 5-day rythmic pattern of dentin deposition
Contour lines of Owen: Originally described by Owen they result from a coincidence of the secondary curvatures between neighboring dentinal tubules.
 

Granular Layer of Tomes
Seen only in ground sections in the root area covered by cementum
Originally, they were thought to be areas of hypomineralization
They are true spaces obtained by sections going through the looped terminal portions dentinal tubules

DE junction :Scalloped area

Enamel tissue with incremental lines of Retzius and dentin tissue with parallel, curved dentinal tubules are in contact at the irregular dentino-enamel junction. The junction often has a scalloped-shaped morphology

DC junction Dentin Cemental Junction

Differences Between the Deciduous and Permanent Teeth

1. Deciduous teeth are fewer in number and smaller in size but the deciduous molars are wider mesiodistally than the premolars. The deciduous anteriors are narrower mesiodistally than their permanent successors. Remember the leeway space that we discussed in the unit on occlusion?

2. Their enamel is thinner and whiter in appearance. Side by side, this is obvious in most young patients.

3. The crowns are rounded. The deciduous teeth are constricted at the neck (cervix).

4. The roots of deciduous anterior teeth are longer and narrower than the roots of their permanent successors.

5. The roots of deciduous molars are longer and more slender than the roots of the permanent molars. Also, they flare greatly.

6. The cervical ridges of enamel seen on deciduous teeth are more prominent than on the permanent teeth. This 'bulge' is very pronounced at the mesiobuccal of deciduous first molars.

G. Deciduous cervical enamel rods incline incisally/occlusally.

Periodontal ligament development

Cells from the dental follicle give rise to the periodontal ligaments (PDL).

Formation of the periodontal ligaments begins with ligament fibroblasts from the dental follicle. These fibroblasts secrete collagen, which interacts with fibers on the surfaces of adjacent bone and cementum. This interaction leads to an attachment that develops as the tooth erupts into the mouth. The occlusion, which is the arrangement of teeth and how teeth in opposite arches come in contact with one another, continually affects the formation of periodontal ligaments. This perpetual creation of periodontal ligaments leads to the formation of groups of fibers in different orientations, such as horizontal and oblique fibers.

Explore by Exams