Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Formation and Eruption of Deciduous Teeth.

-Calcification begins during the fourth month of fetal life. By the end of the sixth month, all of the deciduous teeth have begun calcification.

-By the time the deciduous teeth have fully erupted (two to two and one half years of age), cacification of the crowns of permanent teeth is under way. First permanent molars have begun cacification at the time of birth. -Here are some things to know about eruption patterns:

(1) Teeth tend to erupt in pairs. 

(2) Usually, lower deciduous teeth erupt first. Congenitally missing deciduous teeth is infrequent. Usually, the lower deciduous central incisors are thefirst to erupt thus initiating the deciduous dentition. The appearance of the deciduous second molars completes the deciduous dentition by 2 to 2 1/2 years of age.

- Deciduous teeth shed earlier and permanent teeth erupt earlier in girls.

- The orderly pattern of eruption and their orderly replacement by permanent teeth is important.

- order for eruption of the deciduous teeth is as follows:

(1) Central incisor.........Lower 6 ½ months,         Upper 7 ½ months

(2) Lateral incisor.........Lower 7 months,   Upper 8 months

(3) First deciduous molar...Lower 12-16 months, Upper 12-16 months

(4) Deciduous canine........Lower 16-20 months, Upper 16-20 months

(5) Second deciduous molar..Lower 20-30 months, Upper 20-30 months

Tooth development is the complex process by which teeth form from embryonic cells, grow, and erupt into the mouth.. For human teeth to have a healthy oral environment, enamel, dentin, cementum, and the periodontium must all develop during appropriate stages of fetal development. Primary teeth start to form between the sixth and eighth weeks in utero, and permanent teeth begin to form in the twentieth week in utero.

 Overview

The tooth bud (sometimes called the tooth germ) is an aggregation of cells that eventually forms a tooth.These cells are derived from the ectoderm of the first branchial arch and the ectomesenchyme of the neural crest.The tooth bud is organized into three parts: the enamel organ, the dental papilla and the dental follicle.

The enamel organ is composed of the outer enamel epithelium, inner enamel epithelium, stellate reticulum and stratum intermedium.These cells give rise to ameloblasts, which produce enamel and the reduced enamel epithelium. The location where the outer enamel epithelium and inner enamel epithelium join is called the cervical loop. The growth of cervical loop cells into the deeper tissues forms Hertwig's Epithelial Root Sheath, which determines the root shape of the tooth.

The dental papilla contains cells that develop into odontoblasts, which are dentin-forming cells. Additionally, the junction between the dental papilla and inner enamel epithelium determines the crown shape of a tooth. Mesenchymal cells within the dental papilla are responsible for formation of tooth pulp.

The dental follicle gives rise to three important entities: cementoblasts, osteoblasts, and fibroblasts. Cementoblasts form the cementum of a tooth. Osteoblasts give rise to the alveolar bone around the roots of teeth. Fibroblasts develop the periodontal ligaments which connect teeth to the alveolar bone through cementum.

MANDIBULAR CUSPIDS

Mandibular canines are those lower teeth that articulate with the mesial aspect of the upper canine.

Facial: The mandibular canine is noticeably narrower mesidistally than the upper, but the root may be as long as that of the upper canine. In an individual person,the lower canine is often shorter than that of the upper canine. The mandibular canine is wider mesiodistally than either lower incisor. A distinctive feature is the nearly straight outline of the mesial aspect of the crown and root. When the tooth is unworn, the mesial cusp ridge appears as a sort of 'shoulder' on the tooth. The mesial cusp ridge is much shorter than the distal cusp ridge.

Lingual: The marginal ridges and cingulum are less prominent than those of the maxillary canine. The lingual surface is smooth and regular. The lingual ridge, if present, is usually rather subtle in its expression.

Proximal: The mesial and distal aspects present a triangular outline. The cingulum as noted is less well developed. When the crown and root are viewed from the proximal, this tooth uniquely presents a crescent-like profile similar to a cashew nut.

Incisal: The mesiodistal dimension is clearly less than the labiolingual dimension. The mesial and distal 'halves' of the tooth are more identical than the upper canine from this perspective. In the mandibular canine, the unworn incisal edge is on the line through the long axis of this tooth.

Pulp

1. Four zones—listed from dentin inward

a. Odontoblastic layer

(1) Contains the cell bodies of odontoblasts.

 

Note: their processes remain in dentinal tubules.

 

(2) Capillaries, nerve fibers, and dendritic cells may also be present.

 

b. Cell-free or cell-poor zone (zone of Weil)

(1) Contains capillaries and unmyelinated nerve fibers.

 

c. Cell-rich zone

(1) Consists mainly of fibroblasts. Macrophages, lymphocytes, and dendritic cells may also be present.


d. The pulp (pulp proper, central zone)

(1) The central mass of the pulp.

(2) Consists of loose connective tissue, larger vessels, and nerves. Also contains fibroblasts and pulpal cells.


2. Pulpal innervation

a. When pulpal nerves are stimulated, they can only transmit one signal pain.

b. There are no proprioceptors in the pulp.

 

c. Types of nerves:

(1) A-delta fibers

(a) Myelinated sensory nerve fibers.

(b) Stimulation results in the sensation of fast, sharp pain.

(c) Found in the coronal (odontoblastic) area of the pulp.


(2) C-fibers

(a) Unmyelinated sensory nerve fibers.

(b) Transmits information of noxious stimuli centrally.

(c) Stimulation results in pain that is slower, duller, and more diffuse in nature.

(d) Found in the central region of the pulp.


(3) Sympathetic fibers

(a) Found deeper within the pulp.

(b) Sympathetic stimulation results in vasoconstriction of vessels.

The periodontium consists of tissues supporting and investing the tooth and includes cementum, the periodontal ligament (PDL), and alveolar bone.

Parts of the gingiva adjacent to the tooth also give minor support, although the gingiva is Not considered to be part of the periodontium in many texts. For our purposes here, the groups Of gingival fibers related to tooth investment are discussed in this section.

Histology of the Periodontal Ligament (PDL)

Embryogenesis of the periodontal ligament
The PDL forms from the dental follicle shortly after root development begins
The periodontal ligament is characterized by connective tissue. The thinnest portion is at the middle third of the root. Its width decreases with age. It is a tissue with a high turnover rate.

FUNCTIONS OF PERIODONTIUM

Tooth support
Shock absorber
Sensory (vibrations appreciated in the middle ear/reflex jaw opening)

The following cells can be identified in the periodontal ligament:
a) Osteoblasts and osteoclasts b) Fibroblasts,  c) Epithelial cells
 

Rests of Malassez
d) Macrophages
e) Undifferentiated cells
f) Cementoblasts and cementoclasts (only in pathologic conditions)
The following types of fibers are found in the PDL
-Collagen fibers: groups of fibers
-Oxytalan fibers: variant of elastic fibers, perpendicular to teeth, adjacent to capillaries
-Eluanin: variant of elastic fibers
Ground substance

PERIODONTAL LIGAMENT FIBERS

Principal fibers
These fibers connect the cementum to the alveolar crest. These are:

a. Alveolar crest group: below CE junction, downward, outward
b. Horizontal group: apical to ACG, right angle
c. Oblique group: numerous, coronally to bone, oblique direction
d. Apical group: around the apex, base of socket
e. Interradicular group: multirooted teeth

Gingival ligament fibers
This group is not strictly related to periodontium. These fibers are:

a. Dentogingival: numerous, cervical cementum to f/a gingiva
b. Alveologingival: bone to f/a gingiva
c. Circular: around neck of teeth, free gingiva
d. Dentoperiosteal: cementum to alv. process or vestibule (muscle)
 e. Transseptal: cementum between adjacent teeth, over the alveolar crest
 

Blood supply of the PDL
The PDL gets its blood supply from perforating arteries (from the cribriform plate of the bundle bone). The small capillaries derive from the superior & inferior alveolar arteries. The blood supply is rich because the PDL has a very high turnover as a tissue. The posterior supply is more prominent than the anterior. The mandibular is more prominent than the maxillary.

Nerve supply
The nerve supply originates from the inferior or the superior alveolar nerves. The fibers enter from the apical region and lateral socket walls. The apical region contains more nerve endings (except Upper Incisors)

Dentogingival junction

This area contains the gingival sulcus. The normal depth of the sulcus is 0.5 to 3.0 mm (mean: 1.8 mm). Depth > 3.0 mm is considered pathologic. The sulcus contains the crevicular fluid
 

 
The dentogingival junction is surfaced by:
1) Gingival epithelium: stratified squamous keratinized epithelium 2) Sulcular epithelium: stratified squamous non-keratinized epithelium The lack of keratinization is probably due to inflammation and due to high turnover of this epithelium.
3) Junctional epithelium: flattened epithelial cells with widened intercellular spaces. In the epithelium one identifies neutrophils and monocytes.
Connective tissue
The connective tissue of the dentogingival junction contains inflammatory cells, especially polymorphonuclear neutrophils. These cells migrate to the sulcular and junctional epithelium.
The connective tissue that supports the sulcular epithelium is also structurally and functionally different than the connective tissue that supports the junctional epithelium.

Histology of the Col (=depression)

The col is found in the interdental gingiva. It is surfaced by epithelium that is identical to junctional epithelium. It is an important area because of the accumulation of bacteria, food debris and plaque that can cause periodontal disease.
Blood supply: periosteal vessels
Nerve supply: periodontal nerve fibers, infraorbital, palatine, lingual, mental, buccal

Dental Terminology.

 

Cusp: a point or peak on the occlusal surface of molar and premolar teeth and on the incisal edges of canines.

 

Contact: a point or area where one tooth is in contact (touching) another tooth

 

Cingulum: a bulge or elevation on the lingual surface of incisors or canines. It makes up the bulk of the cervical third of the lingual surface. Its convexity mesiodistally resembles a girdle  encircling the lingual surface at the cervical.

 

Fissure: A linear fault that sometimes occurs in a developmental groove by incomplete or imperfect joining of the lobes. A pit is usually found at the end of a developmental groove or a place where two fissures intersect.

 

Lobe: one of the primary centers of formation in the development of the crown of the tooth.

 

Mamelon: A lobe seen on anterior teeth; any one of three rounded protuberances seen on the unworn surfaces of freshly erupted anterior teeth.

 

Ridge: Any linear elevation on the surface of a tooth. It is named according to its location or form. Examples are buccal ridges, incisal ridges, marginal ridges, and so on.

 

Marginal ridges are those rounded borders of enamel which form the margins of the surfaces of premolars and molars, mesially and distally, and the mesial and distal margins of the incisors and canines lingually.

 

Triangular ridges are those ridges which descend from the tips of the cusps of molars and premolars toward the central part of the occlusal surface. Transverse ridges are created when a buccal and lingual triangular ridge join.

 

Oblique ridges are seen on maxillary molars and are a companion to the distal oblique groove.

 

Cervical ridges are the height of contour at the gingival, on certain deciduous and permanent teeth.

 

Fossa: An irregular, rounded depression or concavity found on the surface of a tooth. A lingual fossa is found on the lingual surface of incisors. A central fossa is found on the occlusal surface of a molar. They are formed by the converging of ridges terminating at a central point in the bottom of a depression where there is a junction of grooves

 

Pit: A small pinpoint depression located at the junction of developmental grooves or at the terminals of these groops. A central pit is found in the central fossa on the occlusal surfaces of molars where developmental grooves join. A pit is often the site of the onset of Dental  caries

 

Developmental groove: A sharply defined, narrow and linear depression formed during tooth development and usually separating lobes or major portions of a tooth.

 

A supplemental groove is also a shallow linear depression but it is usually less distinct and is more variable than a developmental groove and does not mark the junction of primary parts of a tooth.

Buccal and lingual grooves are developmental grooves found on the buccal and lingual surfaces of posterior teeth.

 

Tubercle: A small elevation produced by an extra formation of enamel. These occur on the marginal ridges of posterior teeth or on the cingulum of anterior teeth. These are deviations from the typical form.

 

Interproximal space: The triangular space between the adjacent teeth cervical to the contact point. The base of the triangle is the alveolar bone; the sides are the proximal surfaces of the adjacent teeth.

 

Sulcus:-An elongated valley or depression in the surface of a tooth formed by the inclines of adjacent cusp or ridges.

 

Embrasures: When two teeth in the same arch are in contact, their curvatures adjacent to the contact areas form spillway spaces called embrasures. There are three embrasures:

(1) Facial (buccal or labial)

(2) Occlusal or incisal

(3) Lingual

(NOTE: there are three embrasures; the fourth potential space is the interproximal space ).

Explore by Exams