Talk to us?

Dental Anatomy - NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Time for tooth development

Entire primary dentition initiated between 6 and 8 weeks of embryonic development.
Successional permanent teeth initiated between 20th week in utero and 10th month after birth Permanent molars between 20th week in utero (first molar) and 5th year of life (third molar)

Crown stage

Hard tissues, including enamel and dentin, develop during the next stage of tooth development. This stage is called the crown, or maturation, stage by some researchers. Important cellular changes occur at this time. In prior stages, all of the inner enamel epithelium cells were dividing to increase the overall size of the tooth bud, but rapid dividing, called mitosis, stops during the crown stage at the location where the cusps of the teeth form. The first mineralized hard tissues form at this location. At the same time, the inner enamel epithelial cells change in shape from cuboidal to columnar. The nuclei of these cells move closer to the stratum intermedium and away from the dental papilla.

The adjacent layer of cells in the dental papilla suddenly increases in size and differentiates into odontoblasts, which are the cells that form dentin. Researchers believe that the odontoblasts would not form if it were not for the changes occurring in the inner enamel epithelium. As the changes to the inner enamel epithelium and the formation of odontoblasts continue from the tips of the cusps, the odontoblasts secrete a substance, an organic matrix, into their immediate surrounding. The organic matrix contains the material needed for dentin formation. As odontoblasts deposit organic matrix, they migrate toward the center of the dental papilla. Thus, unlike enamel, dentin starts forming in the surface closest to the outside of the tooth and proceeds inward. Cytoplasmic extensions are left behind as the odontoblasts move inward. The unique, tubular microscopic appearance of dentin is a result of the formation of dentin around these extensions.

After dentin formation begins, the cells of the inner enamel epithelium secrete an organic matrix against the dentin. This matrix immediately mineralizes and becomes the tooth's enamel. Outside the dentin are ameloblasts, which are cells that continue the process of enamel formation; therefore, enamel formation moves outwards, adding new material to the outer surface of the developing tooth.

Soft Oral Tissues

Oral Mucosa

The oral mucosa consists mainly of two types of tissues: the oral epithelium, which consists of stratified, squamous epithelium, and the underlying connective tissue layer, known as the lamina propria.  There are three variations of oral mucosa.

A. Oral epithelium

1. Consists of stratified, squamous epithelium.

2. Four layers (Note: Cells mature as they progress from the deepest [basal] layer to the most superficial [cornified] layer) a. Basal layer (stratum germinativum or basale)

(1) A single layer of cuboidal or columnar cells overlying the lamina propria.

(2) Contains progenitor cells and thus provides cells to the epithelial layers above.

(3) Site of cell division (mitosis).

b. Prickle cell layer (stratum spinosum)

(1) Consists of several layers of larger, ovoid-shaped cells.

c. Granular layer (stratum granulosum)

(1) Cells appear larger and flattened.

(2) Granules (known as keratohyaline granules) are present in the cells.

(3) This layer is absent in nonkeratinized epithelium.

d. Cornified layer (stratum corneum, keratin, or horny layer)

(1) In keratinized epithelium:

(a) Orthokeratinized epithelium the squamous cells on the surface appear flat and contain keratin. They have no nuclei present.

(b) Parakeratinized epithelium the squamous cells appear flat and contain keratin; nuclei are present within the cells.

(2) In parakeratinized epithelium, both squamous cells without nuclei and cells with shriveled (pyknotic) nuclei are present.

(3) In nonkeratinized epithelium, the cells appear slightly flattened and contain nuclei.

B. Lamina propria

1. Consists of type I and III collagen, elastic fibers, and ground substance. It also contains many cell types, including fibroblasts, endothelial cells, immune cells, and a rich vascular and nerve supply.

2. Two layers:

a. Superficial, papillary layer

(1) Located around and between the epithelial ridges.

(2) Collagen fibers are thin and loosely arranged.

b. Reticular layer

(1) Located beneath the papillary layer.

(2) Collagen fibers are organized in thick, parallel bundles.

C. Types of oral mucosa

1. Masticatory mucosa

a. Found in areas that have to withstand compressive and shear forces.

b. Clinically, it has a rubbery, firm texture.

c. Regions: gingiva, hard palate.

2. Lining mucosa

a. Found in areas that are exposed to high levels of friction, but must also be mobile and distensible.

b. Clinically, it has a softer, more elastic texture.

c. Regions: alveolar mucosa, buccal mucosa, lips, floor of the mouth, ventral side of the tongue, and soft palate.

3. Specialized mucosa

a. Similar to masticatory mucosa, specialized mucosa is able to tolerate high compressive

and shear forces; however, it is unique in that it forms lingual papillae.

b. Region: dorsum of the tongue.

D. Submucosa

1. The connective tissue found beneath the mucosa . It contains blood vessels and nerves and may also contain fatty tissue and minor salivary glands.

2. Submucosa is not present in all regions of the oral cavity, such as attached gingiva, the tongue, and hard palate. Its presence tends to increase the mobility of the tissue overlying it.

E. Gingiva

1. The portion of oral mucosa that attaches to the teeth and alveolar bone.

2. There are two types of gingiva: attached and free gingiva. The boundary at which they meet is known as the free gingival groove .

a. Attached gingiva

(1) Directly binds to the alveolar bone and tooth.

(2) It extends from the free gingival groove to the mucogingival junction.

b. Free gingiva

(1) Coronal to the attached gingiva, it is not bound to any hard tissue.

(2) It extends from the gingival margin to the free gingival groove.

c. Together, the free and attached gingiva form the interdental papilla.

.F. Alveolar mucosa

1. The tissue just apical to the attached gingiva.

2. The alveolar mucosa and attached gingiva meet at the mucogingival junction .

G. Junctional epithelium

1. Area where the oral mucosa attaches to the tooth, forming the principal seal between the oral cavity and underlying tissues.

2. Is unique in that it consists of two basal lamina, an internal and external . The internal basal lamina, along with hemidesmosomes, comprises the attachment apparatus (the epithelial attachment). This serves to attach the epithelium directly to the tooth.

3. Histologically, it remains as immature, poorly differentiated tissue. This allows it to maintain its ability to develop hemidesmosomal attachments.

4. Has the highest rate of cell turnover of any oral mucosal tissue.

H. Interdental papilla (interdental gingiva)

1. Occupies the interproximal space between two teeth. It is formed by free and attached gingiva.

2. Functions to prevent food from entering the (interproximal) area beneath the contact point of two adjacent teeth. It therefore plays an important role in maintaining the health of the gingiva.

3. Col

a. If the interdental papilla is cross-sectioned in a buccolingual plane, it would show two peaks (buccal and lingual) with a dip between them, known as the col or interdental col. This depression occurs around the contact point of the two adjacent teeth.

b. Histologically, col epithelium is the same as junctional epithelium

MAXILLARY SECOND MOLAR

The second molars are often called 12-year molars because they erupt when a child is about 12 years

Facial: The crown is shorter occluso-cervically and narrower mesiodistally whe compared to the first molar. The distobuccal cusp is visibly smaller than the mesiobuccal cusp. The two buccal roots are more nearly parallel. The roots are more parallel; the apex of the mesial root is on line with the with the buccal developmental groove. Mesial and distal roots tend to be about the same length.

Lingual: The distolingual cusp is smaller than the mesiolingual cusp. The Carabelli trait is absent.

Proximal: The crown is shorter than the first molar and the palatal root has less diverence. The roots tend to remain within the crown profile.

Occlusal: The distolingual cusp is smaller on the second than on the first molar. When it is much reduced in size, the crown outline is described as 'heart-shaped.' The Carabelli trait is usually absent. The order of cusp size, largest to smallest, is the same as the first but is more exaggerated: mesiolingual, mesiobuccal, distobuccal, and distolingual.

 

Contact Points; Height of Curvature: Both mesial and distal contacts tend to be centered buccolingually below the marginal ridges. Since themolars become shorter, moving from first to this molar, the contacts tend to appear more toward the center of the proximal surfaces.

Roots: There are three roots, two buccal and one lingual. The roots are less divergent than the first with their apices usually falling within the crown profile. The buccal roots tend to incline to the distal.

Note: The distolingual cusp is the most variable feature of this tooth. When it is large, the occlusal is somewhat rhomboidal; when reduced in size the crown is described as triangual or 'heart-shaped.' At times, the root may be fused.

Maxillary Third Permanent Molar

They are the teeth most often congenitally missing

Facial: The crown is usually shorter in both axial and mesiodistal dimensions. Two buccal roots are present, but in most cases they are fused. The mesial buccal cusp is larger than the distal buccal cusp.

Lingual: In most thirds, there is just one large lingual cusp. In some cases there is a poorly developed distolingual cusp and a lingual groove. The lingual root is often fused to the to buccal cusps.

Proximal: The outline of the crown is rounded; it is often described as bulbous in dental literature. Technically, the mesial surface is the only 'proximal' surface. The distal surface does not contact another tooth.

Occlusal: The crown of this tooth is the smallest of the maxillary molars. The outline of the occlusal surface can be described as heart-shaped. The mesial lingual cusp is the largest, the mesial buccal is second in size, and the distal buccal cusp is the smallest.

Root Surface:-The root may have from one to as many as eight divisions. These divisions are usually fused and very often curved distally.

Differences Between the Deciduous and Permanent Teeth

1. Deciduous teeth are fewer in number and smaller in size but the deciduous molars are wider mesiodistally than the premolars. The deciduous anteriors are narrower mesiodistally than their permanent successors. Remember the leeway space that we discussed in the unit on occlusion?

2. Their enamel is thinner and whiter in appearance. Side by side, this is obvious in most young patients.

3. The crowns are rounded. The deciduous teeth are constricted at the neck (cervix).

4. The roots of deciduous anterior teeth are longer and narrower than the roots of their permanent successors.

5. The roots of deciduous molars are longer and more slender than the roots of the permanent molars. Also, they flare greatly.

6. The cervical ridges of enamel seen on deciduous teeth are more prominent than on the permanent teeth. This 'bulge' is very pronounced at the mesiobuccal of deciduous first molars.

G. Deciduous cervical enamel rods incline incisally/occlusally.

Periodontal ligament

Composition

a. Consists mostly of collagenous (alveolodental) fibers.
Note: the portions of the fibers embedded in cementum and the alveolar bone proper are known as Sharpey’s fibers.

b. Oxytalan fibers (a type of elastic fiber) are also present. Although their function is unknown, they may play a role in the regulation of vascular flow.

c. Contains mostly type I collagen, although smaller amounts of type III and XII collagen are also present.

d. Has a rich vascular and nerve supply.

Both sensory and autonomic nerves are present.

(1) The sensory nerves in the PDL differ from pulpal nerves in that PDL nerve endings can detect both proprioception (via mechanoreceptors) and pain (via nociceptors).

(2) The autonomic nerve fibers are associated with the regulation of periodontal vascular flow.

(3) Nerve fibers may be myelinated (sensory) or unmyelinated (sensory or autonomic).

Cells

a. Cells present in the PDL include fibroblasts; epithelial cells; cementoblasts and cementoclasts; osteoblasts and osteoclasts; and immune cells such as macrophages, mast cells, or eosinophils.

b. These cells play a role in forming or destroying cementum, alveolar bone, or PDL.

c. Epithelial cells often appear in clusters, known as rests of Malassez.

Types of alveolodental fibers

a. Alveolar crest fibers
—radiate downward from cementum, just below the cementoenamel junction (CEJ), to the crest of alveolar bone.

b. Horizontal fibers—radiate perpendicular to the tooth surface from cementum to alveolar bone, just below the alveolar crest.

c. Oblique fibers

(1) Radiate downward from the alveolar bone to cementum.

(2) The most numerous type of PDL fiber.

(3) Resist occlusal forces that occur along the long axis of the tooth.

d. Apical fibers

(1) Radiate from the cementum at the apex of the tooth into the alveolar bone.

(2) Resist forces that pull the tooth in an occlusal direction (i.e., forces that try to pull the tooth from its socket).

e. Interradicular fibers

(1) Only found in the furcal area of multi-rooted teeth.

(2) Resist forces that pull the tooth in an occlusal direction.

Gingival fibers

a. The fibers of the gingival ligament are not strictly part of the PDL, but they play a role in the maintainence of the periodontium.

b. Gingival fibers are packed in groups and are found in the lamina propria of gingiva

c. Gingival fiber groups:

(1) Transseptal (interdental) fibers

(a) Extend from the cementum of one tooth (just apical to the junctional epithelium), over the alveolar crest, to the corresponding area of the cementum of the adjacent tooth.

(b) Collectively, these fibers form the interdental ligament , which functions to resist rotational forces and retain adjacent teeth in interproximal contact.

(c) These fibers have been implicated as a major cause of postretention relapse of teeth that have undergone orthodontic treatment.

(2) Circular (circumferential) fibers

(a) Extend around tooth near the CEJ.

(b) Function in binding free gingiva to the tooth and resisting rotational forces.

(3) Alveologingival fibers—extend from the alveolar crest to lamina propria of free and attached gingiva.

(4) Dentogingival fibers—extend from cervical cementum to the lamina propria of free and attached gingiva.

(5) Dentoperiosteal fibers—extend from cervical cementum, over the alveolar crest, to the periosteum of the alveolar bone.

Explore by Exams