NEET MDS Lessons
Dental Anatomy
Development of occlusion.
A. Occlusion usually means the contact relationship in function. Concepts of occlusion vary with almost every specialty of dentistry.
Centric occlusion is the maximum contact and/or intercuspation of the teeth.
B. Occlusion is the sum total of many factors.
1. Genetic factors.
-Teeth can vary in size. Examples are microdontia (very small teeth) and macrodontia (very large teeth). Incidentally, Australian aborigines have the largest molar tooth size—some 35% larger than the smallest molar tooth group
-The shape of individual teeth can vary (such as third molars and the upper lateral incisors.)
-They can vary when and where they erupt, or they may not erupt at all (impaction).
-Teeth can be congenitally missing (partial or complete anodontia), or there can be extra (supernumerary) teeth.
-The skeletal support (maxilla/mandible) and how they are related to each other can vary considerably from the norm.
2. Environmental factors.
-Habits can have an affect: wear, thumbsucking, pipestem or cigarette holder usage, orthodontic appliances, orthodontic retainers have an influence on the occlusion.
3.Muscular pressure.
-Once the teeth erupt into the oral cavity, the position of teeth is affected by other teeth, both in the same dental arch and by teeth in the opposing dental arch.
-Teeth are affected by muscular pressure on the facial side (by cheeks/lips) and on the lingual side (by the tongue).
C. Occlusion constantly changes with development, maturity, and aging.
1 . There is change with the eruption and shedding of teeth as the successional changes from deciduous to permanent dentitions take place.
2. Tooth wear is significant over a lifetime. Abrasion, the wearing away of the occlusal surface reduces crown height and alters occlusal anatomy.
Attrition of the proximal surfaces reduces the mesial-distal dimensions of the teeth and significantly reduces arch length over a lifetime.
Abraision is the wear of teeth by agencies other than the friction of one tooth against another.
Attrition is the wear of teeth by one tooth rubbing against another
3. Tooth loss leaves one or more teeth without an antagonist. Also, teeth drift, tip, and rotate when other teeth in the arch are extracted.
Alveolar bone (process)
1. The bone in the jaws that contains the teeth alveoli (sockets).
2. Three types of bone :
a. Cribriform plate (alveolar bone proper)
(1) Directly lines and forms the tooth socket. It is compact bone that contains many holes, allowing for the passage of blood vessels. It has no periosteum.
(2) Serves as the attachment site for PDL (Sharpey’s) fibers.
(3) The tooth socket is constantly being remodeled in response to occlusal forces. The bone laid down on the cribriform plate, which also provides attachment for PDL fibers, is known as bundle bone.
(4) It is radiographically known as the lamina dura.
b. Cortical (compact) bone
(1) Lines the buccal and lingual surfaces of the mandible and maxilla.
(2) Is typical compact bone with a periosteum and contains Haversian systems.
(3) Is generally thinner in the maxilla and thicker in the mandible, especially around the buccal area of the mandibular premolar and molar.
c. Trabecular (cancellous, spongy) bone
(1) Is typical cancellous bone containing Haversian systems.
(2) Is absent in the maxillary anterior teeth region.
3. Alveolar crest (septa)
a. The height of the alveolar crest is usually 1.5 to 2 mm below the CEJ junction.
b. The width is determined by the shape of adjacent teeth.
(1) Narrow crests—found between teeth with relatively flat surfaces.
(2) Widened crests—found between teeth with convex surfaces or teeth spaced apart.
Periodontal ligament
Composition
a. Consists mostly of collagenous (alveolodental) fibers.
Note: the portions of the fibers embedded in cementum and the alveolar bone proper are known as Sharpey’s fibers.
b. Oxytalan fibers (a type of elastic fiber) are also present. Although their function is unknown, they may play a role in the regulation of vascular flow.
c. Contains mostly type I collagen, although smaller amounts of type III and XII collagen are also present.
d. Has a rich vascular and nerve supply.
Both sensory and autonomic nerves are present.
(1) The sensory nerves in the PDL differ from pulpal nerves in that PDL nerve endings can detect both proprioception (via mechanoreceptors) and pain (via nociceptors).
(2) The autonomic nerve fibers are associated with the regulation of periodontal vascular flow.
(3) Nerve fibers may be myelinated (sensory) or unmyelinated (sensory or autonomic).
Cells
a. Cells present in the PDL include fibroblasts; epithelial cells; cementoblasts and cementoclasts; osteoblasts and osteoclasts; and immune cells such as macrophages, mast cells, or eosinophils.
b. These cells play a role in forming or destroying cementum, alveolar bone, or PDL.
c. Epithelial cells often appear in clusters, known as rests of Malassez.
Types of alveolodental fibers
a. Alveolar crest fibers—radiate downward from cementum, just below the cementoenamel junction (CEJ), to the crest of alveolar bone.
b. Horizontal fibers—radiate perpendicular to the tooth surface from cementum to alveolar bone, just below the alveolar crest.
c. Oblique fibers
(1) Radiate downward from the alveolar bone to cementum.
(2) The most numerous type of PDL fiber.
(3) Resist occlusal forces that occur along the long axis of the tooth.
d. Apical fibers
(1) Radiate from the cementum at the apex of the tooth into the alveolar bone.
(2) Resist forces that pull the tooth in an occlusal direction (i.e., forces that try to pull the tooth from its socket).
e. Interradicular fibers
(1) Only found in the furcal area of multi-rooted teeth.
(2) Resist forces that pull the tooth in an occlusal direction.
Gingival fibers
a. The fibers of the gingival ligament are not strictly part of the PDL, but they play a role in the maintainence of the periodontium.
b. Gingival fibers are packed in groups and are found in the lamina propria of gingiva
c. Gingival fiber groups:
(1) Transseptal (interdental) fibers
(a) Extend from the cementum of one tooth (just apical to the junctional epithelium), over the alveolar crest, to the corresponding area of the cementum of the adjacent tooth.
(b) Collectively, these fibers form the interdental ligament , which functions to resist rotational forces and retain adjacent teeth in interproximal contact.
(c) These fibers have been implicated as a major cause of postretention relapse of teeth that have undergone orthodontic treatment.
(2) Circular (circumferential) fibers
(a) Extend around tooth near the CEJ.
(b) Function in binding free gingiva to the tooth and resisting rotational forces.
(3) Alveologingival fibers—extend from the alveolar crest to lamina propria of free and attached gingiva.
(4) Dentogingival fibers—extend from cervical cementum to the lamina propria of free and attached gingiva.
(5) Dentoperiosteal fibers—extend from cervical cementum, over the alveolar crest, to the periosteum of the alveolar bone.
Transient structures during tooth development
Enamel knot: Thickening of the internal dental epithelium at the center of the dental organ.
Enamel cord: Epithelial proliferation that seems to divide the dental organ in two.
Review the role of these two structures
Enamel niche: It is an artifact that is produced during section of the tissue. It occurs because the dental organ is a sheet of proliferating cells rather than a single strand. It looks like a concavity that contains ectomesenchyme.
Enamel
Structural characteristics and microscopic features
a. Enamel rods or prisms
(1) Basic structural unit of enamel.
(2) Consists of tightly packed hydroxyapatite crystals. Hydroxyapatite crystals in enamel are four times larger and more tightly packed than hydroxyapatite found in other calcified
tissues (i.e., it is harder than bone).
(3) Each rod extends the entire thickness of enamel and is perpendicular to the dentinoenamel junction (DEJ).
b. Aprismatic enamel
(1) The thin outer layer of enamel found on the surface of newly erupted teeth.
(2) Consists of enamel crystals that are aligned perpendicular to the surface.
(3) It is aprismatic (i.e., prismless) and is more mineralized than the enamel beneath it.
(4) It results from the absence of Tomes processes on the ameloblasts during the final stages of enamel deposition.
c. Lines of Retzius (enamel striae)
(1) Microscopic features
(a) In longitudinal sections, they are observed as brown lines that extend from the DEJ to the
tooth surface.
(b) In transverse sections, they appear as dark, concentric rings similar to growth rings in a tree.
(2) The lines appear weekly during the formation of enamel.
(3) Although the cause of striae formation is unknown, the lines may represent appositional or incremental growth of enamel. They may also result from metabolic disturbances of ameloblasts.
(4) Neonatal line
(a) An accentuated, dark line of Retzius that results from the effect of physiological changes
on ameloblasts at birth.
(b) Found in all primary teeth and some cusps of permanent first molars.
d. Perikymata
(1) Lines of Retzius terminate on the tooth surface in shallow grooves known a perikymata.
(2) These grooves are usually lost through wear but may be observed on the surfaces of developing teeth or nonmasticatory surfaces of formed teeth.
e. Hunter-Schreger bands
(1) Enamel rods run in different directions. In longitudinal sections, these changes in direction result in a banding pattern known as HunterSchreger bands.
(2) These bands represent an optical phenomenon of enamel and consist of a series of alternating dark and light lines when the section is viewed with reflected or polarized
light.
f. Enamel tufts
(1) Consist of hypomineralized groups of enamel rods.
(2) They are observed as short, dark projections found near or at the DEJ.
(3) They have no known clinical significance.
g. Enamel lamellae
(1) Small, sheet-like cracks found on the surface of enamel that extend its entire thickness.
(2) Consist of hypocalcified enamel.
(3) The open crack may be filled with organic material from leftover enamel organ components, connective tissues of the developing tooth, or debris from the oral cavity.
(4) Both enamel tufts and lamellae may be likened to geological faults in mature enamel.
h. Enamel spindle
(1) Remnants of odontoblastic processes that become trapped after crossing the DEJ during the differentiation of ameloblasts.
(2) Spindles are more pronounced beneath the cusps or incisal edges of teeth (i.e., areas where occlusal stresses are the greatest).
Types of dentitions:
1. Diphyodont. Teeth develop and erupt into their jaws in two generations of teeth. The term literally means two generations of teeth.
2. Monophyodont. a single generation of teeth.
3. Polyphyodont. Teeth develop a lifetime of generations of successional teeth
4. Homodont. all of the teeth in the jaw are alike. They differ from each other only in size.
5. Heterodont. There is distinctive classes of teeth that are regionally specialized.
MAXILLARY CUSPIDS (CANINE)
The maxillary cuspid is usually the longest tooth in either jaw. canines are considered the corner stones of the dental arch They are the only teeth in the dentition with a single cusp.
Facial Surface:- The facial surface of the crown differs considerably from that of the maxillary central or lateral incisors. In that the incisal edges of the central and lateral incisor are nearly straight, the cuspid has a definite point, or cusp. There are two cutting edges, the mesioincisal and the distoincisal. The distoincisal cutting edge is the longer of the two. The developmental grooves prominent on the facial surface extending two-thirds of the distance from the tip of the cusp to the cervical line. The distal cusp ridge is longer than the mesial cusp ridge
Lingual Surface: Distinct mesial and distal marginal ridges, a well-devloped cingulum, and the cusp ridges form the boundries of the lingual surface. The prominent lingual ridge extends from the cusp tip to the cingulum, dividing the lingual surface into mesial and distal fossae.
Proximal: The mesial and distal aspects present a triangular outline. They resemble the incisors, but are more robust--especially in the cingulum region
Incisal: The asymmetry of this tooth is readily apparent from this aspect. It usually thicker labiolingually than it is mesiodistally. The tip of the cusp is displaced labially and mesial to the central long axis of this tooth.
Root Surface:-The root is single and is the longest root in the arch. It is usually twice the length of the crown.