NEET MDS Lessons
Dental Anatomy
CEMENTUM vs. BONE
Cementum simulates bone
1) Organic fibrous framework, ground substance, crystal type, development
2) Lacunae
3) Canaliculi
4) Cellular components
5) Incremental lines (also known as "resting" lines; they are produced by continuous but phasic, deposition of cementum)
Differences between cementum and bone
1) Cementum is not vascularized
2) Cementum has minor ability to remodel
3) Cementum is more resistant to resorption compared to bone
4) Cementum lacks neural component
5) Cementum contains a unique proteoglycan interfibrillar substance
6) 70% of bone is made by inorganic salts (cementum only 46%)
Relation of Cementum to Enamel at the Cementoenamel Junction (CEJ)
"OMG rule"
In 60% of the teeth cementum Overlaps enamel
In 30% of the teeth cementum just Meets enamel
In 10% of the teeth there is a small Gap between cementum and enamel
The Transition from the Deciduous to the Permanent Dentition.
1. The transition begins with the eruption of the four first permanent molars, and replacement of the lower deciduous central incisors by the permanent lower central incisors.
2. Complete resorption of the deciduous tooth roots permits exfoliation of that tooth and replacement by the permanent (successional) teeth
3. The mixed dentition exists from approximately age 6 years to approximately age 12 years. In contrast, the intact deciduous dentition is functional from age 2 - 2 /2 years of age to 6 years of age.
4. The enamel organ of each permanent anterior tooth is connected to the oral epithelium via a fibrous cord, the gubernaculum. The foramina through which it passes can be seen in youthful skulls
The deciduous second molars are particularly important. It is imperative that the deciduous second molars be preserved until their normal time of exfoliation. This prevent mesial migration of the first permanent molars.
Use a space maintainer in the event that a second deciduous molar is lost prematurely
Dentinogenesis
Dentin formation, known as dentinogenesis, is the first identifiable feature in the crown stage of tooth development. The formation of dentin must always occur before the formation of enamel. The different stages of dentin formation result in different types of dentin: mantle dentin, primary dentin, secondary dentin, and tertiary dentin.
Odontoblasts, the dentin-forming cells, differentiate from cells of the dental papilla. They begin secreting an organic matrix around the area directly adjacent to the inner enamel epithelium, closest to the area of the future cusp of a tooth. The organic matrix contains collagen fibers with large diameters (0.1-0.2 μm in diameter). The odontoblasts begin to move toward the center of the tooth, forming an extension called the odontoblast process. Thus, dentin formation proceeds toward the inside of the tooth. The odontoblast process causes the secretion of hydroxyapatite crystals and mineralization of the matrix. This area of mineralization is known as mantle dentin and is a layer usually about 150 μm thick.
Whereas mantle dentin forms from the preexisting ground substance of the dental papilla, primary dentin forms through a different process. Odontoblasts increase in size, eliminating the availability of any extracellular resources to contribute to an organic matrix for mineralization. Additionally, the larger odontoblasts cause collagen to be secreted in smaller amounts, which results in more tightly arranged, heterogenous nucleation that is used for mineralization. Other materials (such as lipids, phosphoproteins, and phospholipids) are also secreted.
Secondary dentin is formed after root formation is finished and occurs at a much slower rate. It is not formed at a uniform rate along the tooth, but instead forms faster along sections closer to the crown of a tooth. This development continues throughout life and accounts for the smaller areas of pulp found in older individuals. Tertiary dentin, also known as reparative dentin, forms in reaction to stimuli, such as attrition or dental caries.
The dentin in the root of a tooth forms only after the presence of Hertwig's epithelial root sheath (HERS), near the cervical loop of the enamel organ. Root dentin is considered different than dentin found in the crown of the tooth (known as coronal dentin) because of the different orientation of collagen fibers, the decrease of phosphoryn levels, and the less amount of mineralization.
As root and cementum formation begin, bone is created in the adjacent area. Throughout the body, cells that form bone are called osteoblasts. In the case of alveolar bone, these osteoblast cells form from the dental follicle. Similar to the formation of primary cementum, collagen fibers are created on the surface nearest the tooth, and they remain there until attaching to periodontal ligaments.
Like any other bone in the human body, alveolar bone is modified throughout life. Osteoblasts create bone and osteoclasts destroy it, especially if force is placed on a tooth. As is the case when movement of teeth is attempted through orthodontics, an area of bone under compressive force from a tooth moving toward it has a high osteoclast level, resulting in bone resorption. An area of bone receiving tension from periodontal ligaments attached to a tooth moving away from it has a high number of osteoblasts, resulting in bone formation.
Mixed Dentition Period.
-Begins with the eruption of the first permanent molars distal to the second deciduous molars. These are the first teeth to emerge and they initially articulate in an 'end-on' (one on top of the other) relationship.
-On occasion, the permanent incisors spread out due to spacing. In the older literature, is called by the 'ugly duckling stage.' With the eruption of the permanent canines, the spaces often will close.
-Between ages 6 and 7 years of age there are:
20 deciduous teeth
4 first permanent molars
28 permanent tooth buds in various states of development
Bell stage
The bell stage is known for the histodifferentiation and morphodifferentiation that takes place. The dental organ is bell-shaped during this stage, and the majority of its cells are called stellate reticulum because of their star-shaped appearance. Cells on the periphery of the enamel organ separate into three important layers. Cuboidal cells on the periphery of the dental organ are known as outer enamel epithelium.The cells of the enamel organ adjacent to the dental papilla are known as inner enamel epithelium. The cells between the inner enamel epithelium and the stellate reticulum form a layer known as the stratum intermedium. The rim of the dental organ where the outer and inner enamel epithelium join is called the cervical loop
Other events occur during the bell stage. The dental lamina disintegrates, leaving the developing teeth completely separated from the epithelium of the oral cavity; the two will not join again until the final eruption of the tooth into the mouth
The crown of the tooth, which is influenced by the shape of the internal enamel epithelium, also takes shape during this stage. Throughout the mouth, all teeth undergo this same process; it is still uncertain why teeth form various crown shapes—for instance, incisors versus canines. There are two dominant hypotheses. The "field model" proposes there are components for each type of tooth shape found in the ectomesenchyme during tooth development. The components for particular types of teeth, such as incisors, are localized in one area and dissipate rapidly in different parts of the mouth. Thus, for example, the "incisor field" has factors that develop teeth into incisor shape, and this field is concentrated in the central incisor area, but decreases rapidly in the canine area. The other dominant hypothesis, the "clone model", proposes that the epithelium programs a group of ectomesenchymal cells to generate teeth of particular shapes. This group of cells, called a clone, coaxes the dental lamina into tooth development, causing a tooth bud to form. Growth of the dental lamina continues in an area called the "progress zone". Once the progress zone travels a certain distance from the first tooth bud, a second tooth bud will start to develop. These two models are not necessarily mutually exclusive, nor does widely accepted dental science consider them to be so: it is postulated that both models influence tooth development at different times.Other structures that may appear in a developing tooth in this stage are enamel knots, enamel cords, and enamel niche.
TOOTH MORPHOLOGY
Descriptive anatomy
- Median sagittal plane: the imaginary plane in the center that divides right from left.
- Median line: an imaginary line on that plane that bisects the dental arch at the center.
- Mesial: toward the center (median) line of the dental arch.
- Distal: away from the center (median) line of the dental arch.
- Occlusal plane: A plane formed by the cusps of the teeth. It is often curved, as in a cylinder. We will speak often of the occlusal surface of a tooth.
- Proximal: the surface of a tooth that is toward another tooth in the arch.
- Mesial surface: toward the midline.
- Distal surface: away from the midline.
- Facial: toward the cheeks or lips.
- Labial: facial surface of anterior teeth (toward the lips).
- Buccal: facial surfaceof anterior teeth (toward the cheeks).
- Lingual: toward the tongue.
- Occlusal: the biting surface; that surface that articulates with an antagonist tooth in an opposing arch.
- Incisal: cutting edge of anterior teeth.
- Apical: toward the apex, the tip of the root.