NEET MDS Lessons
Dental Anatomy
Development of occlusion.
A. Occlusion usually means the contact relationship in function. Concepts of occlusion vary with almost every specialty of dentistry.
Centric occlusion is the maximum contact and/or intercuspation of the teeth.
B. Occlusion is the sum total of many factors.
1. Genetic factors.
-Teeth can vary in size. Examples are microdontia (very small teeth) and macrodontia (very large teeth). Incidentally, Australian aborigines have the largest molar tooth size—some 35% larger than the smallest molar tooth group
-The shape of individual teeth can vary (such as third molars and the upper lateral incisors.)
-They can vary when and where they erupt, or they may not erupt at all (impaction).
-Teeth can be congenitally missing (partial or complete anodontia), or there can be extra (supernumerary) teeth.
-The skeletal support (maxilla/mandible) and how they are related to each other can vary considerably from the norm.
2. Environmental factors.
-Habits can have an affect: wear, thumbsucking, pipestem or cigarette holder usage, orthodontic appliances, orthodontic retainers have an influence on the occlusion.
3.Muscular pressure.
-Once the teeth erupt into the oral cavity, the position of teeth is affected by other teeth, both in the same dental arch and by teeth in the opposing dental arch.
-Teeth are affected by muscular pressure on the facial side (by cheeks/lips) and on the lingual side (by the tongue).
C. Occlusion constantly changes with development, maturity, and aging.
1 . There is change with the eruption and shedding of teeth as the successional changes from deciduous to permanent dentitions take place.
2. Tooth wear is significant over a lifetime. Abrasion, the wearing away of the occlusal surface reduces crown height and alters occlusal anatomy.
Attrition of the proximal surfaces reduces the mesial-distal dimensions of the teeth and significantly reduces arch length over a lifetime.
Abraision is the wear of teeth by agencies other than the friction of one tooth against another.
Attrition is the wear of teeth by one tooth rubbing against another
3. Tooth loss leaves one or more teeth without an antagonist. Also, teeth drift, tip, and rotate when other teeth in the arch are extracted.
Mandibular Second Deciduous Molar.
-This tooth resembles the lower first permanent molar that is d
istal to it in the dental arch.
-There are two roots and five cusps. The three buccal cusps are all about the same size. This is in contrast to the lower first molar where the 'distal' cusp is smaller that the mesiobuccal and distobuccal cusps.
-The distal of the three buccal cusps may be shifted of onto the distal marginal ridge.
NOTE
-Upper molars have three roots, lowers have two roots.
-Upper and lower second deciduous molars resemble first permanent molars in the same quadrant.
-Upper first deciduous molars vaguely resemble upper premolars. -Lower first deciduous molars are odd and unique unto themselves.
-First deciduous molars (upper and lower) have a prominent bulge of enamel on the buccal at the mesial. These help in determining right and left.
Crown stage
Hard tissues, including enamel and dentin, develop during the next stage of tooth development. This stage is called the crown, or maturation, stage by some researchers. Important cellular changes occur at this time. In prior stages, all of the inner enamel epithelium cells were dividing to increase the overall size of the tooth bud, but rapid dividing, called mitosis, stops during the crown stage at the location where the cusps of the teeth form. The first mineralized hard tissues form at this location. At the same time, the inner enamel epithelial cells change in shape from cuboidal to columnar. The nuclei of these cells move closer to the stratum intermedium and away from the dental papilla.
The adjacent layer of cells in the dental papilla suddenly increases in size and differentiates into odontoblasts, which are the cells that form dentin. Researchers believe that the odontoblasts would not form if it were not for the changes occurring in the inner enamel epithelium. As the changes to the inner enamel epithelium and the formation of odontoblasts continue from the tips of the cusps, the odontoblasts secrete a substance, an organic matrix, into their immediate surrounding. The organic matrix contains the material needed for dentin formation. As odontoblasts deposit organic matrix, they migrate toward the center of the dental papilla. Thus, unlike enamel, dentin starts forming in the surface closest to the outside of the tooth and proceeds inward. Cytoplasmic extensions are left behind as the odontoblasts move inward. The unique, tubular microscopic appearance of dentin is a result of the formation of dentin around these extensions.
After dentin formation begins, the cells of the inner enamel epithelium secrete an organic matrix against the dentin. This matrix immediately mineralizes and becomes the tooth's enamel. Outside the dentin are ameloblasts, which are cells that continue the process of enamel formation; therefore, enamel formation moves outwards, adding new material to the outer surface of the developing tooth.
Periodontal ligament development
Cells from the dental follicle give rise to the periodontal ligaments (PDL).
Formation of the periodontal ligaments begins with ligament fibroblasts from the dental follicle. These fibroblasts secrete collagen, which interacts with fibers on the surfaces of adjacent bone and cementum. This interaction leads to an attachment that develops as the tooth erupts into the mouth. The occlusion, which is the arrangement of teeth and how teeth in opposite arches come in contact with one another, continually affects the formation of periodontal ligaments. This perpetual creation of periodontal ligaments leads to the formation of groups of fibers in different orientations, such as horizontal and oblique fibers.
Mandibular First Deciduous Molar
-This tooth doesn't resemble any other tooth. It is unique unto itself.
-There are two roots.
-There is a strong bulbous enamel bulge buccally at the mesial.
- the mesiolingual cusps on this tooth is the highest and largest of the cusps.
The pre-dentition period.
-This is from birth to six months.
-At this stage, there are no teeth. Clinically, the infant is edentulous
-Both jaws undergo rapid growth; the growth is in three planes of space: downward, forward, and laterally (to the side). Forward growth for the mandible is greater.
-The maxillary and mandibular alveolar processes are not well developed at birth.
-occasionally, there is a neonatal tooth present at birth. It is a supernumerary and is often lost soon after birth.
-At birth, bulges in the developing alveoli precede eruption of the deciduous teeth. At birth, the molar pads can touch.
LOCATION OF THE TEETH
Normally, a human receives two sets of teeth during a lifetime.
The first (deciduous or primary) set consists of 20 teeth ("baby" teeth).
The second (permanent) set usually consists of 32 teeth. In each quadrant, there are eight permanent teeth: two incisors, one cuspid, two bicuspids, and three molars
The tooth positioned immediately to the side of the midline is the central incisor, so called because it occupies a central location in the arch.
To the side of the central incisor is the lateral incisor. Next is the cuspid, then the two bicuspids (the first bicuspid, followed by the second bicuspid). The last teeth are three molars. After the second bicuspid comes the first molar, followed by the second molar, followed by the third molar or more commonly called the "wisdom tooth."
Another method of describing the location of teeth is to refer to them as anterior or posterior teeth .
Anterior teeth are those located in the front of the mouth, the incisors, and the cuspids. Normally, these are the teeth that are visible when a person smiles.
The posterior teeth are those located in the back of the mouth-the bicuspids and molars.