NEET MDS Lessons
Dental Anatomy
Introduction. The Jaws and Dental Arches
The teeth are arranged in upper and lower arches. Those of the upper are called maxillary; those of the lower are mandibular.
- The maxilla is actually two bones forming the upper jaw; they are rigidly attached to the skull..
- The mandible is a horseshoe shaped bone which articulates with the skull by way of the temporomandibular joint the TMJ.
- The dental arches, the individual row of teeth forming a tooth row attached to their respective jaw bones have a distinctive shape known as a catenary arch.
Tooth development is commonly divided into the following stages: the bud stage, the cap, the bell, and finally maturation. The staging of tooth development is an attempt to categorize changes that take place along a continuum; frequently it is difficult to decide what stage should be assigned to a particular developing tooth. This determination is further complicated by the varying appearance of different histological sections of the same developing tooth, which can appear to be different stages.
Bud stage
The bud stage is characterized by the appearance of a tooth bud without a clear arrangement of cells. The stage technically begins once epithelial cells proliferate into the ectomesenchyme of the jaw. The tooth bud itself is the group of cells at the end of the dental lamina.
Dentinogenesis
Dentin formation, known as dentinogenesis, is the first identifiable feature in the crown stage of tooth development. The formation of dentin must always occur before the formation of enamel. The different stages of dentin formation result in different types of dentin: mantle dentin, primary dentin, secondary dentin, and tertiary dentin.
Odontoblasts, the dentin-forming cells, differentiate from cells of the dental papilla. They begin secreting an organic matrix around the area directly adjacent to the inner enamel epithelium, closest to the area of the future cusp of a tooth. The organic matrix contains collagen fibers with large diameters (0.1-0.2 μm in diameter). The odontoblasts begin to move toward the center of the tooth, forming an extension called the odontoblast process. Thus, dentin formation proceeds toward the inside of the tooth. The odontoblast process causes the secretion of hydroxyapatite crystals and mineralization of the matrix. This area of mineralization is known as mantle dentin and is a layer usually about 150 μm thick.
Whereas mantle dentin forms from the preexisting ground substance of the dental papilla, primary dentin forms through a different process. Odontoblasts increase in size, eliminating the availability of any extracellular resources to contribute to an organic matrix for mineralization. Additionally, the larger odontoblasts cause collagen to be secreted in smaller amounts, which results in more tightly arranged, heterogenous nucleation that is used for mineralization. Other materials (such as lipids, phosphoproteins, and phospholipids) are also secreted.
Secondary dentin is formed after root formation is finished and occurs at a much slower rate. It is not formed at a uniform rate along the tooth, but instead forms faster along sections closer to the crown of a tooth. This development continues throughout life and accounts for the smaller areas of pulp found in older individuals. Tertiary dentin, also known as reparative dentin, forms in reaction to stimuli, such as attrition or dental caries.
The dentin in the root of a tooth forms only after the presence of Hertwig's epithelial root sheath (HERS), near the cervical loop of the enamel organ. Root dentin is considered different than dentin found in the crown of the tooth (known as coronal dentin) because of the different orientation of collagen fibers, the decrease of phosphoryn levels, and the less amount of mineralization.
Transient structures during tooth development
Enamel knot: Thickening of the internal dental epithelium at the center of the dental organ.
Enamel cord: Epithelial proliferation that seems to divide the dental organ in two.
Review the role of these two structures
Enamel niche: It is an artifact that is produced during section of the tissue. It occurs because the dental organ is a sheet of proliferating cells rather than a single strand. It looks like a concavity that contains ectomesenchyme.
MANDIBULAR THIRD MOLAR
Facial: The crown is often short and has a rounded outline.
Lingual: Similarly, the crown is short and the crown is bulbous.
Proximal: Mesially and distally, this tooth resembles the first and second molars. The crown of the third molar, however, is shorter than either of the other molars
Occlusal: Four or five cusps may be present. Occlusal surface is a same as of the first or second molar, or poorly developed with many accessory grooves. The occlusal outline is often ovoid and the occlusal surface is constricted. Occasionally, the surface has so many grooves that it is described as crenulated--a condition seen in the great apes
Contact Points; The rounded mesial surface has its contact area more cervical than any other lower molar. There is no tooth distal to the third molar..
Roots:-The roots, two in number, are shorter in length and tend to be fused together. they show a distinct distal curve
Embryonic development
The parotid derives from ectoderm
The sublingual-submandibular glands thought to derive from endoderm
Differentiation of the ectomesenchyme
Development of fibrous capsule
Formation of septa that divide the gland into lobes and lobules
The parotid develops around 4-6 weeks of embryonic lofe
The submandibular gland develops around the 6th week
The sublingual and the minor glands develop around the 8-12 week
CEMENTUM vs. BONE
Cementum simulates bone
1) Organic fibrous framework, ground substance, crystal type, development
2) Lacunae
3) Canaliculi
4) Cellular components
5) Incremental lines (also known as "resting" lines; they are produced by continuous but phasic, deposition of cementum)
Differences between cementum and bone
1) Cementum is not vascularized
2) Cementum has minor ability to remodel
3) Cementum is more resistant to resorption compared to bone
4) Cementum lacks neural component
5) Cementum contains a unique proteoglycan interfibrillar substance
6) 70% of bone is made by inorganic salts (cementum only 46%)
Relation of Cementum to Enamel at the Cementoenamel Junction (CEJ)
"OMG rule"
In 60% of the teeth cementum Overlaps enamel
In 30% of the teeth cementum just Meets enamel
In 10% of the teeth there is a small Gap between cementum and enamel