NEET MDS Lessons
Dental Anatomy
INNERVATION OF THE DENTIN-PULP COMPLEX
- Dentine Pulp
- Dentin
- Nerve Fibre Bundle
- Nerve fibres
The nerve bundles entering the tooth pulp consist principally of sensory afferent fibers from the trigeminal nerve and sympathetic branches from the superior cervical ganglion. There are non-myelinated (C fibers) and myelinated (less than non, A-delta, A-beta) fibers. Some nerve endings terminate on or in association with the odontoblasts and others in the predentinal tubules of the crown. Few fibers are found among odontoblasts of the root.
In the cell-free zone one can find the plexus of Raschkow.
Compensating curvatures of the individual teeth.
- the gentle curvature of the long axes of certain posterior teeth to exhibit a gentle curvature.
-These are probably analogous to the trabecular patterns seen in the femur and therefore reflect lines of stress experienced during function.
Posteruptive tooth movement.
These movements occur after eruption of the teeth into function in the oral cavity. These movements, known collectively as occlusomesial forces.
A. Continuous tooth eruption eruption of teeth after coming into occlusion. This process compensates for occlusal tooth wear.. Cementum deposition and progressive remodelling of the alveolar bone are the growth processes that provide for continuous tooth movement
B. Physiological mesial drift :Tthe tendency of permanent posterior teeth to migrate mesially in the dental arch both before and after they come into occlusion. Clinically, it compensates for proximal tooth wear.
(1) It describes the tendency of posterior teeth to move anteriorly.
(2) It applies to permanent teeth, not deciduous teeth.
(3) The distal tooth have the stronger is the tendency for drift.
(4) It compensates for proximal wear.
(5) In younger persons, teeth drift bodily; in older persons, they tip and rotate.
(6) Forces that cause it include occlusal forces, PDL contraction, and soft tissue pressures. There may be other more subtle factors as well.
Height of Epithelial Attachment
The height of normal gingival tissue . mesiallv and distallv on approximating teeth, is directly dependent upon the height of the epithelial attachment on these teeth. Normal attachment follows the curvature of the cementoenamel junction if the teeth are jn proper, alignment and contact.
Dental Terminology.
Cusp: a point or peak on the occlusal surface of molar and premolar teeth and on the incisal edges of canines.
Contact: a point or area where one tooth is in contact (touching) another tooth
Cingulum: a bulge or elevation on the lingual surface of incisors or canines. It makes up the bulk of the cervical third of the lingual surface. Its convexity mesiodistally resembles a girdle encircling the lingual surface at the cervical.
Fissure: A linear fault that sometimes occurs in a developmental groove by incomplete or imperfect joining of the lobes. A pit is usually found at the end of a developmental groove or a place where two fissures intersect.
Lobe: one of the primary centers of formation in the development of the crown of the tooth.
Mamelon: A lobe seen on anterior teeth; any one of three rounded protuberances seen on the unworn surfaces of freshly erupted anterior teeth.
Ridge: Any linear elevation on the surface of a tooth. It is named according to its location or form. Examples are buccal ridges, incisal ridges, marginal ridges, and so on.
Marginal ridges are those rounded borders of enamel which form the margins of the surfaces of premolars and molars, mesially and distally, and the mesial and distal margins of the incisors and canines lingually.
Triangular ridges are those ridges which descend from the tips of the cusps of molars and premolars toward the central part of the occlusal surface. Transverse ridges are created when a buccal and lingual triangular ridge join.
Oblique ridges are seen on maxillary molars and are a companion to the distal oblique groove.
Cervical ridges are the height of contour at the gingival, on certain deciduous and permanent teeth.
Fossa: An irregular, rounded depression or concavity found on the surface of a tooth. A lingual fossa is found on the lingual surface of incisors. A central fossa is found on the occlusal surface of a molar. They are formed by the converging of ridges terminating at a central point in the bottom of a depression where there is a junction of grooves
Pit: A small pinpoint depression located at the junction of developmental grooves or at the terminals of these groops. A central pit is found in the central fossa on the occlusal surfaces of molars where developmental grooves join. A pit is often the site of the onset of Dental caries
Developmental groove: A sharply defined, narrow and linear depression formed during tooth development and usually separating lobes or major portions of a tooth.
A supplemental groove is also a shallow linear depression but it is usually less distinct and is more variable than a developmental groove and does not mark the junction of primary parts of a tooth.
Buccal and lingual grooves are developmental grooves found on the buccal and lingual surfaces of posterior teeth.
Tubercle: A small elevation produced by an extra formation of enamel. These occur on the marginal ridges of posterior teeth or on the cingulum of anterior teeth. These are deviations from the typical form.
Interproximal space: The triangular space between the adjacent teeth cervical to the contact point. The base of the triangle is the alveolar bone; the sides are the proximal surfaces of the adjacent teeth.
Sulcus:-An elongated valley or depression in the surface of a tooth formed by the inclines of adjacent cusp or ridges.
Embrasures: When two teeth in the same arch are in contact, their curvatures adjacent to the contact areas form spillway spaces called embrasures. There are three embrasures:
(1) Facial (buccal or labial)
(2) Occlusal or incisal
(3) Lingual
(NOTE: there are three embrasures; the fourth potential space is the interproximal space ).
MANDIBULAR LATERAL INCISORS
The mandibular incisor is a little wider mesiodistal than the mandibular central incisor, and the crown is slightly longer from the incisal edge to the cervical line.
Facial Surface:-The facial surface is less symmetrical than the facial surface of the mandibular central incisor. The incisal edge slopes upward toward the mesioincisal angle, which is slightly less than 90°. The distoincisal angle is rounded. The mesial border is more nearly straight than the distal border.
Lingual Surface:- The incisal portion of the lingual surface is concave. The cingulum is quite large but blends in smoothly with the rest of the surface.
Root Surface:-The root is single and extremely flattened on its mesial and distal surfaces.
Stationary Relationship
a) .Centric Relation is the most superior relationship of the condyle of the mandible to the articular fossa of the temporal bone as determined by the bones ligaments. and muscles of the temporomandibular joint; in an ideal dentition it is the same as centric occlusion.
(b) Canines may also be used to confirm the molar relationships to classify occlusion when molars are missing; a class I canine relationship shows the cusp tip of the maxillary canine facial to the mesiobuccal cusp of the first permanent molar
c) Second primary molars are used to classify the occlusion in a primary dentition
(d) In a mixed dentition the first permanent molars will erupt into a normal occlusion if there is a terminal step between the distal surfaces of maxillarv and mandibular second primary molars; if these surfaces are flush, a terminal plane exists and the first permanent molars will first erupt into an end-to-end relationship until there is a shifting of space or exfoliation of the second primary molar
Histology of the Periodontal Ligament (PDL)
Embryogenesis of the periodontal ligament
The PDL forms from the dental follicle shortly after root development begins
The periodontal ligament is characterized by connective tissue. The thinnest portion is at the middle third of the root. Its width decreases with age. It is a tissue with a high turnover rate.
FUNCTIONS OF PERIODONTIUM
Tooth support
Shock absorber
Sensory (vibrations appreciated in the middle ear/reflex jaw opening)
The following cells can be identified in the periodontal ligament:
a) Osteoblasts and osteoclasts b) Fibroblasts, c) Epithelial cells
Rests of Malassez
d) Macrophages
e) Undifferentiated cells
f) Cementoblasts and cementoclasts (only in pathologic conditions)
The following types of fibers are found in the PDL
-Collagen fibers: groups of fibers
-Oxytalan fibers: variant of elastic fibers, perpendicular to teeth, adjacent to capillaries
-Eluanin: variant of elastic fibers
Ground substance
PERIODONTAL LIGAMENT FIBERS
Principal fibers
These fibers connect the cementum to the alveolar crest. These are:
a. Alveolar crest group: below CE junction, downward, outward
b. Horizontal group: apical to ACG, right angle
c. Oblique group: numerous, coronally to bone, oblique direction
d. Apical group: around the apex, base of socket
e. Interradicular group: multirooted teeth
Gingival ligament fibers
This group is not strictly related to periodontium. These fibers are:
a. Dentogingival: numerous, cervical cementum to f/a gingiva
b. Alveologingival: bone to f/a gingiva
c. Circular: around neck of teeth, free gingiva
d. Dentoperiosteal: cementum to alv. process or vestibule (muscle)
e. Transseptal: cementum between adjacent teeth, over the alveolar crest
Blood supply of the PDL
The PDL gets its blood supply from perforating arteries (from the cribriform plate of the bundle bone). The small capillaries derive from the superior & inferior alveolar arteries. The blood supply is rich because the PDL has a very high turnover as a tissue. The posterior supply is more prominent than the anterior. The mandibular is more prominent than the maxillary.
Nerve supply
The nerve supply originates from the inferior or the superior alveolar nerves. The fibers enter from the apical region and lateral socket walls. The apical region contains more nerve endings (except Upper Incisors)
Dentogingival junction
This area contains the gingival sulcus. The normal depth of the sulcus is 0.5 to 3.0 mm (mean: 1.8 mm). Depth > 3.0 mm is considered pathologic. The sulcus contains the crevicular fluid
The dentogingival junction is surfaced by:
1) Gingival epithelium: stratified squamous keratinized epithelium 2) Sulcular epithelium: stratified squamous non-keratinized epithelium The lack of keratinization is probably due to inflammation and due to high turnover of this epithelium.
3) Junctional epithelium: flattened epithelial cells with widened intercellular spaces. In the epithelium one identifies neutrophils and monocytes.
Connective tissue
The connective tissue of the dentogingival junction contains inflammatory cells, especially polymorphonuclear neutrophils. These cells migrate to the sulcular and junctional epithelium.
The connective tissue that supports the sulcular epithelium is also structurally and functionally different than the connective tissue that supports the junctional epithelium.
Histology of the Col (=depression)
The col is found in the interdental gingiva. It is surfaced by epithelium that is identical to junctional epithelium. It is an important area because of the accumulation of bacteria, food debris and plaque that can cause periodontal disease.
Blood supply: periosteal vessels
Nerve supply: periodontal nerve fibers, infraorbital, palatine, lingual, mental, buccal
Types of dentitions:
1. Diphyodont. Teeth develop and erupt into their jaws in two generations of teeth. The term literally means two generations of teeth.
2. Monophyodont. a single generation of teeth.
3. Polyphyodont. Teeth develop a lifetime of generations of successional teeth
4. Homodont. all of the teeth in the jaw are alike. They differ from each other only in size.
5. Heterodont. There is distinctive classes of teeth that are regionally specialized.