NEET MDS Lessons
Dental Anatomy
Differences Between the Deciduous and Permanent Teeth
1. Deciduous teeth are fewer in number and smaller in size but the deciduous molars are wider mesiodistally than the premolars. The deciduous anteriors are narrower mesiodistally than their permanent successors. Remember the leeway space that we discussed in the unit on occlusion?
2. Their enamel is thinner and whiter in appearance. Side by side, this is obvious in most young patients.
3. The crowns are rounded. The deciduous teeth are constricted at the neck (cervix).
4. The roots of deciduous anterior teeth are longer and narrower than the roots of their permanent successors.
5. The roots of deciduous molars are longer and more slender than the roots of the permanent molars. Also, they flare greatly.
6. The cervical ridges of enamel seen on deciduous teeth are more prominent than on the permanent teeth. This 'bulge' is very pronounced at the mesiobuccal of deciduous first molars.
G. Deciduous cervical enamel rods incline incisally/occlusally.
MAXILLARY CUSPIDS (CANINE)
The maxillary cuspid is usually the longest tooth in either jaw. canines are considered the corner stones of the dental arch They are the only teeth in the dentition with a single cusp.
Facial Surface:- The facial surface of the crown differs considerably from that of the maxillary central or lateral incisors. In that the incisal edges of the central and lateral incisor are nearly straight, the cuspid has a definite point, or cusp. There are two cutting edges, the mesioincisal and the distoincisal. The distoincisal cutting edge is the longer of the two. The developmental grooves prominent on the facial surface extending two-thirds of the distance from the tip of the cusp to the cervical line. The distal cusp ridge is longer than the mesial cusp ridge
Lingual Surface: Distinct mesial and distal marginal ridges, a well-devloped cingulum, and the cusp ridges form the boundries of the lingual surface. The prominent lingual ridge extends from the cusp tip to the cingulum, dividing the lingual surface into mesial and distal fossae.
Proximal: The mesial and distal aspects present a triangular outline. They resemble the incisors, but are more robust--especially in the cingulum region
Incisal: The asymmetry of this tooth is readily apparent from this aspect. It usually thicker labiolingually than it is mesiodistally. The tip of the cusp is displaced labially and mesial to the central long axis of this tooth.
Root Surface:-The root is single and is the longest root in the arch. It is usually twice the length of the crown.
Dental Formula, Dental Notation, Universal Numbering System
A. Dental Formula. The dental formula expresses the type and number of teeth per side
The Universal Numbering System. The rules are as follows:
1. Permanent teeth are designated by number, beginning with the last tooth on the upper right side, going on to the last tooth on the left side, then lower left to lower right
2. Deciduous teeth are designated by letter, beginning with the last tooth on the upper right side and proceeding in clockwise fashion
CONTACT POINT.:-The point on the proximal surface where two adjacent teeth actually touch each other is called a contact point.
INTERPROXIMAL SPACE.:-The interproximal space is the area between the teeth. Part of the interproximal space is occupied by the interdental papilla. The interdental papilla is a triangular fold of gingival tissue. The part of the interproximal space not occupied is called the embrasure.
EMBRASURE. :-The embrasure occupies an area bordered by interdental papilla, the proximal surfaces of the two adjacent teeth, and the contact point (fig 4-18). If there is no contact point between the teeth, then the area between them is called a diastema instead of an embrasure.
OCCLUSAL
The occlusal surface is the broad chewing surface found on posterior teeth (bicuspids and molars).
OCCLUSION.:-Occlusion is the relationship between the occlusal surfaces of maxillary and mandibular teeth when they are in contact. Many patterns of tooth contact are possible. Part of the reason for the variety is the mandibular condyle's substantial range of movement within the temporal mandibular joint.
Malocclusion occurs when any abnormality in occlusal relationships exist in the dentition. Centric occlusion, is the centered contact position of the chewing surfaces of mandibular teeth on the chewing surface (occlusal) of the maxillary teeth.
OCCLUSAL PLANE.:-Maxillary and mandibular teeth come into centric occlusion and meet along anteroposterior and lateral curves. The anteroposterior curve is called the Curve of Spee in which the mandibular arch forms a concave (a bowl-like upward curve). The lateral curve is called the Curve of Wilson . The composite (combination) of these curves form a line called the occlusal plane, and is created by the contact of the upper and lower teeth
VERTICAL AND HORIZONTAL OVERLAP. :-Vertical overlap is the extension of the maxillary teeth over the mandibular counterparts in a vertical direction when the dentition is in centric occlusion Horizontal overlap is the projection of maxillary teeth over antagonists (something that opposes another) in a horizontal direction.
KEY TO OCCLUSION.:-The occlusal surfaces of opposing teeth bear a definite relationship to each other. In normal jaw relations and when teeth are of normal size and in the correct position, the mesiofacial cusp of the maxillary first molar occludes in the facial groove of the mandibular first molar. This normal relationship of these two teeth is called the key to occlusion.
PERMANENT DENTITION
The permanent dentition consists of 32 teeth. Each tooth in the permanent dentition is described in this section. It should be remembered that teeth show considerable variation in size, shape, and other characteristics from one person to another. Certain teeth show a greater tendency than others to deviate from the normal. The descriptions that follow are of normal teeth.
Mixed Dentition Period.
-Begins with the eruption of the first permanent molars distal to the second deciduous molars. These are the first teeth to emerge and they initially articulate in an 'end-on' (one on top of the other) relationship.
-On occasion, the permanent incisors spread out due to spacing. In the older literature, is called by the 'ugly duckling stage.' With the eruption of the permanent canines, the spaces often will close.
-Between ages 6 and 7 years of age there are:
20 deciduous teeth
4 first permanent molars
28 permanent tooth buds in various states of development
Enamel
Structural characteristics and microscopic features
a. Enamel rods or prisms
(1) Basic structural unit of enamel.
(2) Consists of tightly packed hydroxyapatite crystals. Hydroxyapatite crystals in enamel are four times larger and more tightly packed than hydroxyapatite found in other calcified
tissues (i.e., it is harder than bone).
(3) Each rod extends the entire thickness of enamel and is perpendicular to the dentinoenamel junction (DEJ).
b. Aprismatic enamel
(1) The thin outer layer of enamel found on the surface of newly erupted teeth.
(2) Consists of enamel crystals that are aligned perpendicular to the surface.
(3) It is aprismatic (i.e., prismless) and is more mineralized than the enamel beneath it.
(4) It results from the absence of Tomes processes on the ameloblasts during the final stages of enamel deposition.
c. Lines of Retzius (enamel striae)
(1) Microscopic features
(a) In longitudinal sections, they are observed as brown lines that extend from the DEJ to the
tooth surface.
(b) In transverse sections, they appear as dark, concentric rings similar to growth rings in a tree.
(2) The lines appear weekly during the formation of enamel.
(3) Although the cause of striae formation is unknown, the lines may represent appositional or incremental growth of enamel. They may also result from metabolic disturbances of ameloblasts.
(4) Neonatal line
(a) An accentuated, dark line of Retzius that results from the effect of physiological changes
on ameloblasts at birth.
(b) Found in all primary teeth and some cusps of permanent first molars.
d. Perikymata
(1) Lines of Retzius terminate on the tooth surface in shallow grooves known a perikymata.
(2) These grooves are usually lost through wear but may be observed on the surfaces of developing teeth or nonmasticatory surfaces of formed teeth.
e. Hunter-Schreger bands
(1) Enamel rods run in different directions. In longitudinal sections, these changes in direction result in a banding pattern known as HunterSchreger bands.
(2) These bands represent an optical phenomenon of enamel and consist of a series of alternating dark and light lines when the section is viewed with reflected or polarized
light.
f. Enamel tufts
(1) Consist of hypomineralized groups of enamel rods.
(2) They are observed as short, dark projections found near or at the DEJ.
(3) They have no known clinical significance.
g. Enamel lamellae
(1) Small, sheet-like cracks found on the surface of enamel that extend its entire thickness.
(2) Consist of hypocalcified enamel.
(3) The open crack may be filled with organic material from leftover enamel organ components, connective tissues of the developing tooth, or debris from the oral cavity.
(4) Both enamel tufts and lamellae may be likened to geological faults in mature enamel.
h. Enamel spindle
(1) Remnants of odontoblastic processes that become trapped after crossing the DEJ during the differentiation of ameloblasts.
(2) Spindles are more pronounced beneath the cusps or incisal edges of teeth (i.e., areas where occlusal stresses are the greatest).
Compensating curvatures of the individual teeth.
- the gentle curvature of the long axes of certain posterior teeth to exhibit a gentle curvature.
-These are probably analogous to the trabecular patterns seen in the femur and therefore reflect lines of stress experienced during function.
Posteruptive tooth movement.
These movements occur after eruption of the teeth into function in the oral cavity. These movements, known collectively as occlusomesial forces.
A. Continuous tooth eruption eruption of teeth after coming into occlusion. This process compensates for occlusal tooth wear.. Cementum deposition and progressive remodelling of the alveolar bone are the growth processes that provide for continuous tooth movement
B. Physiological mesial drift :Tthe tendency of permanent posterior teeth to migrate mesially in the dental arch both before and after they come into occlusion. Clinically, it compensates for proximal tooth wear.
(1) It describes the tendency of posterior teeth to move anteriorly.
(2) It applies to permanent teeth, not deciduous teeth.
(3) The distal tooth have the stronger is the tendency for drift.
(4) It compensates for proximal wear.
(5) In younger persons, teeth drift bodily; in older persons, they tip and rotate.
(6) Forces that cause it include occlusal forces, PDL contraction, and soft tissue pressures. There may be other more subtle factors as well.
Height of Epithelial Attachment
The height of normal gingival tissue . mesiallv and distallv on approximating teeth, is directly dependent upon the height of the epithelial attachment on these teeth. Normal attachment follows the curvature of the cementoenamel junction if the teeth are jn proper, alignment and contact.