NEET MDS Lessons
Dental Anatomy
Bell stage
The bell stage is known for the histodifferentiation and morphodifferentiation that takes place. The dental organ is bell-shaped during this stage, and the majority of its cells are called stellate reticulum because of their star-shaped appearance. Cells on the periphery of the enamel organ separate into three important layers. Cuboidal cells on the periphery of the dental organ are known as outer enamel epithelium.The cells of the enamel organ adjacent to the dental papilla are known as inner enamel epithelium. The cells between the inner enamel epithelium and the stellate reticulum form a layer known as the stratum intermedium. The rim of the dental organ where the outer and inner enamel epithelium join is called the cervical loop
Other events occur during the bell stage. The dental lamina disintegrates, leaving the developing teeth completely separated from the epithelium of the oral cavity; the two will not join again until the final eruption of the tooth into the mouth
The crown of the tooth, which is influenced by the shape of the internal enamel epithelium, also takes shape during this stage. Throughout the mouth, all teeth undergo this same process; it is still uncertain why teeth form various crown shapes—for instance, incisors versus canines. There are two dominant hypotheses. The "field model" proposes there are components for each type of tooth shape found in the ectomesenchyme during tooth development. The components for particular types of teeth, such as incisors, are localized in one area and dissipate rapidly in different parts of the mouth. Thus, for example, the "incisor field" has factors that develop teeth into incisor shape, and this field is concentrated in the central incisor area, but decreases rapidly in the canine area. The other dominant hypothesis, the "clone model", proposes that the epithelium programs a group of ectomesenchymal cells to generate teeth of particular shapes. This group of cells, called a clone, coaxes the dental lamina into tooth development, causing a tooth bud to form. Growth of the dental lamina continues in an area called the "progress zone". Once the progress zone travels a certain distance from the first tooth bud, a second tooth bud will start to develop. These two models are not necessarily mutually exclusive, nor does widely accepted dental science consider them to be so: it is postulated that both models influence tooth development at different times.Other structures that may appear in a developing tooth in this stage are enamel knots, enamel cords, and enamel niche.
Alveolar bone (process)
1. The bone in the jaws that contains the teeth alveoli (sockets).
2. Three types of bone :
a. Cribriform plate (alveolar bone proper)
(1) Directly lines and forms the tooth socket. It is compact bone that contains many holes, allowing for the passage of blood vessels. It has no periosteum.
(2) Serves as the attachment site for PDL (Sharpey’s) fibers.
(3) The tooth socket is constantly being remodeled in response to occlusal forces. The bone laid down on the cribriform plate, which also provides attachment for PDL fibers, is known as bundle bone.
(4) It is radiographically known as the lamina dura.
b. Cortical (compact) bone
(1) Lines the buccal and lingual surfaces of the mandible and maxilla.
(2) Is typical compact bone with a periosteum and contains Haversian systems.
(3) Is generally thinner in the maxilla and thicker in the mandible, especially around the buccal area of the mandibular premolar and molar.
c. Trabecular (cancellous, spongy) bone
(1) Is typical cancellous bone containing Haversian systems.
(2) Is absent in the maxillary anterior teeth region.
3. Alveolar crest (septa)
a. The height of the alveolar crest is usually 1.5 to 2 mm below the CEJ junction.
b. The width is determined by the shape of adjacent teeth.
(1) Narrow crests—found between teeth with relatively flat surfaces.
(2) Widened crests—found between teeth with convex surfaces or teeth spaced apart.
Stationary Relationship
a) .Centric Relation is the most superior relationship of the condyle of the mandible to the articular fossa of the temporal bone as determined by the bones ligaments. and muscles of the temporomandibular joint; in an ideal dentition it is the same as centric occlusion.
(b) Canines may also be used to confirm the molar relationships to classify occlusion when molars are missing; a class I canine relationship shows the cusp tip of the maxillary canine facial to the mesiobuccal cusp of the first permanent molar
c) Second primary molars are used to classify the occlusion in a primary dentition
(d) In a mixed dentition the first permanent molars will erupt into a normal occlusion if there is a terminal step between the distal surfaces of maxillarv and mandibular second primary molars; if these surfaces are flush, a terminal plane exists and the first permanent molars will first erupt into an end-to-end relationship until there is a shifting of space or exfoliation of the second primary molar
Periodontal ligament
Composition
a. Consists mostly of collagenous (alveolodental) fibers.
Note: the portions of the fibers embedded in cementum and the alveolar bone proper are known as Sharpey’s fibers.
b. Oxytalan fibers (a type of elastic fiber) are also present. Although their function is unknown, they may play a role in the regulation of vascular flow.
c. Contains mostly type I collagen, although smaller amounts of type III and XII collagen are also present.
d. Has a rich vascular and nerve supply.
Both sensory and autonomic nerves are present.
(1) The sensory nerves in the PDL differ from pulpal nerves in that PDL nerve endings can detect both proprioception (via mechanoreceptors) and pain (via nociceptors).
(2) The autonomic nerve fibers are associated with the regulation of periodontal vascular flow.
(3) Nerve fibers may be myelinated (sensory) or unmyelinated (sensory or autonomic).
Cells
a. Cells present in the PDL include fibroblasts; epithelial cells; cementoblasts and cementoclasts; osteoblasts and osteoclasts; and immune cells such as macrophages, mast cells, or eosinophils.
b. These cells play a role in forming or destroying cementum, alveolar bone, or PDL.
c. Epithelial cells often appear in clusters, known as rests of Malassez.
Types of alveolodental fibers
a. Alveolar crest fibers—radiate downward from cementum, just below the cementoenamel junction (CEJ), to the crest of alveolar bone.
b. Horizontal fibers—radiate perpendicular to the tooth surface from cementum to alveolar bone, just below the alveolar crest.
c. Oblique fibers
(1) Radiate downward from the alveolar bone to cementum.
(2) The most numerous type of PDL fiber.
(3) Resist occlusal forces that occur along the long axis of the tooth.
d. Apical fibers
(1) Radiate from the cementum at the apex of the tooth into the alveolar bone.
(2) Resist forces that pull the tooth in an occlusal direction (i.e., forces that try to pull the tooth from its socket).
e. Interradicular fibers
(1) Only found in the furcal area of multi-rooted teeth.
(2) Resist forces that pull the tooth in an occlusal direction.
Gingival fibers
a. The fibers of the gingival ligament are not strictly part of the PDL, but they play a role in the maintainence of the periodontium.
b. Gingival fibers are packed in groups and are found in the lamina propria of gingiva
c. Gingival fiber groups:
(1) Transseptal (interdental) fibers
(a) Extend from the cementum of one tooth (just apical to the junctional epithelium), over the alveolar crest, to the corresponding area of the cementum of the adjacent tooth.
(b) Collectively, these fibers form the interdental ligament , which functions to resist rotational forces and retain adjacent teeth in interproximal contact.
(c) These fibers have been implicated as a major cause of postretention relapse of teeth that have undergone orthodontic treatment.
(2) Circular (circumferential) fibers
(a) Extend around tooth near the CEJ.
(b) Function in binding free gingiva to the tooth and resisting rotational forces.
(3) Alveologingival fibers—extend from the alveolar crest to lamina propria of free and attached gingiva.
(4) Dentogingival fibers—extend from cervical cementum to the lamina propria of free and attached gingiva.
(5) Dentoperiosteal fibers—extend from cervical cementum, over the alveolar crest, to the periosteum of the alveolar bone.
Periodontal ligament development
Cells from the dental follicle give rise to the periodontal ligaments (PDL).
Formation of the periodontal ligaments begins with ligament fibroblasts from the dental follicle. These fibroblasts secrete collagen, which interacts with fibers on the surfaces of adjacent bone and cementum. This interaction leads to an attachment that develops as the tooth erupts into the mouth. The occlusion, which is the arrangement of teeth and how teeth in opposite arches come in contact with one another, continually affects the formation of periodontal ligaments. This perpetual creation of periodontal ligaments leads to the formation of groups of fibers in different orientations, such as horizontal and oblique fibers.
Compensating curvatures of the individual teeth.
- the gentle curvature of the long axes of certain posterior teeth to exhibit a gentle curvature.
-These are probably analogous to the trabecular patterns seen in the femur and therefore reflect lines of stress experienced during function.
Posteruptive tooth movement.
These movements occur after eruption of the teeth into function in the oral cavity. These movements, known collectively as occlusomesial forces.
A. Continuous tooth eruption eruption of teeth after coming into occlusion. This process compensates for occlusal tooth wear.. Cementum deposition and progressive remodelling of the alveolar bone are the growth processes that provide for continuous tooth movement
B. Physiological mesial drift :Tthe tendency of permanent posterior teeth to migrate mesially in the dental arch both before and after they come into occlusion. Clinically, it compensates for proximal tooth wear.
(1) It describes the tendency of posterior teeth to move anteriorly.
(2) It applies to permanent teeth, not deciduous teeth.
(3) The distal tooth have the stronger is the tendency for drift.
(4) It compensates for proximal wear.
(5) In younger persons, teeth drift bodily; in older persons, they tip and rotate.
(6) Forces that cause it include occlusal forces, PDL contraction, and soft tissue pressures. There may be other more subtle factors as well.
Height of Epithelial Attachment
The height of normal gingival tissue . mesiallv and distallv on approximating teeth, is directly dependent upon the height of the epithelial attachment on these teeth. Normal attachment follows the curvature of the cementoenamel junction if the teeth are jn proper, alignment and contact.
Mixed Dentition Period.
-Begins with the eruption of the first permanent molars distal to the second deciduous molars. These are the first teeth to emerge and they initially articulate in an 'end-on' (one on top of the other) relationship.
-On occasion, the permanent incisors spread out due to spacing. In the older literature, is called by the 'ugly duckling stage.' With the eruption of the permanent canines, the spaces often will close.
-Between ages 6 and 7 years of age there are:
20 deciduous teeth
4 first permanent molars
28 permanent tooth buds in various states of development