NEET MDS Lessons
Dental Anatomy
The pre-dentition period.
-This is from birth to six months.
-At this stage, there are no teeth. Clinically, the infant is edentulous
-Both jaws undergo rapid growth; the growth is in three planes of space: downward, forward, and laterally (to the side). Forward growth for the mandible is greater.
-The maxillary and mandibular alveolar processes are not well developed at birth.
-occasionally, there is a neonatal tooth present at birth. It is a supernumerary and is often lost soon after birth.
-At birth, bulges in the developing alveoli precede eruption of the deciduous teeth. At birth, the molar pads can touch.
Transient structures during tooth development
Enamel knot: Thickening of the internal dental epithelium at the center of the dental organ.
Enamel cord: Epithelial proliferation that seems to divide the dental organ in two.
Review the role of these two structures
Enamel niche: It is an artifact that is produced during section of the tissue. It occurs because the dental organ is a sheet of proliferating cells rather than a single strand. It looks like a concavity that contains ectomesenchyme.
Development of occlusion.
A. Occlusion usually means the contact relationship in function. Concepts of occlusion vary with almost every specialty of dentistry.
Centric occlusion is the maximum contact and/or intercuspation of the teeth.
B. Occlusion is the sum total of many factors.
1. Genetic factors.
-Teeth can vary in size. Examples are microdontia (very small teeth) and macrodontia (very large teeth). Incidentally, Australian aborigines have the largest molar tooth size—some 35% larger than the smallest molar tooth group
-The shape of individual teeth can vary (such as third molars and the upper lateral incisors.)
-They can vary when and where they erupt, or they may not erupt at all (impaction).
-Teeth can be congenitally missing (partial or complete anodontia), or there can be extra (supernumerary) teeth.
-The skeletal support (maxilla/mandible) and how they are related to each other can vary considerably from the norm.
2. Environmental factors.
-Habits can have an affect: wear, thumbsucking, pipestem or cigarette holder usage, orthodontic appliances, orthodontic retainers have an influence on the occlusion.
3.Muscular pressure.
-Once the teeth erupt into the oral cavity, the position of teeth is affected by other teeth, both in the same dental arch and by teeth in the opposing dental arch.
-Teeth are affected by muscular pressure on the facial side (by cheeks/lips) and on the lingual side (by the tongue).
C. Occlusion constantly changes with development, maturity, and aging.
1 . There is change with the eruption and shedding of teeth as the successional changes from deciduous to permanent dentitions take place.
2. Tooth wear is significant over a lifetime. Abrasion, the wearing away of the occlusal surface reduces crown height and alters occlusal anatomy.
Attrition of the proximal surfaces reduces the mesial-distal dimensions of the teeth and significantly reduces arch length over a lifetime.
Abraision is the wear of teeth by agencies other than the friction of one tooth against another.
Attrition is the wear of teeth by one tooth rubbing against another
3. Tooth loss leaves one or more teeth without an antagonist. Also, teeth drift, tip, and rotate when other teeth in the arch are extracted.
ERUPTION OF THE PERMANENT TOOTH
- At the time at which the deciduous tooth erupts the tooth bud for the permanent tooth has already been building up enamel and dentin.
- When the permanent tooth starts to erupt, pressure on the root of the deciduous tooth causes resorption by the osteoclasts.
- Wolff's law states that when two hard tissues exert pressure on one another the softer of the tissues will be resorbed.
- The dentin and cementum of the root of the deciduous tooth is softer than the enamel of the permanent tooth that is why the root of the deciduous tooth is resorbed.
- Most permanent teeth have erupted and have been in use for 2 years before the root is completely formed.
As root and cementum formation begin, bone is created in the adjacent area. Throughout the body, cells that form bone are called osteoblasts. In the case of alveolar bone, these osteoblast cells form from the dental follicle. Similar to the formation of primary cementum, collagen fibers are created on the surface nearest the tooth, and they remain there until attaching to periodontal ligaments.
Like any other bone in the human body, alveolar bone is modified throughout life. Osteoblasts create bone and osteoclasts destroy it, especially if force is placed on a tooth. As is the case when movement of teeth is attempted through orthodontics, an area of bone under compressive force from a tooth moving toward it has a high osteoclast level, resulting in bone resorption. An area of bone receiving tension from periodontal ligaments attached to a tooth moving away from it has a high number of osteoblasts, resulting in bone formation.
Dental Formula, Dental Notation, Universal Numbering System
A. Dental Formula. The dental formula expresses the type and number of teeth per side
The Universal Numbering System. The rules are as follows:
1. Permanent teeth are designated by number, beginning with the last tooth on the upper right side, going on to the last tooth on the left side, then lower left to lower right
2. Deciduous teeth are designated by letter, beginning with the last tooth on the upper right side and proceeding in clockwise fashion
FUNCTIONS OF PERIODONTIUM
Tooth support
Shock absorber
Sensory (vibrations appreciated in the middle ear/reflex jaw opening)