Talk to us?

Dental Anatomy - NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Tooth development is the complex process by which teeth form from embryonic cells, grow, and erupt into the mouth.. For human teeth to have a healthy oral environment, enamel, dentin, cementum, and the periodontium must all develop during appropriate stages of fetal development. Primary teeth start to form between the sixth and eighth weeks in utero, and permanent teeth begin to form in the twentieth week in utero.

 Overview

The tooth bud (sometimes called the tooth germ) is an aggregation of cells that eventually forms a tooth.These cells are derived from the ectoderm of the first branchial arch and the ectomesenchyme of the neural crest.The tooth bud is organized into three parts: the enamel organ, the dental papilla and the dental follicle.

The enamel organ is composed of the outer enamel epithelium, inner enamel epithelium, stellate reticulum and stratum intermedium.These cells give rise to ameloblasts, which produce enamel and the reduced enamel epithelium. The location where the outer enamel epithelium and inner enamel epithelium join is called the cervical loop. The growth of cervical loop cells into the deeper tissues forms Hertwig's Epithelial Root Sheath, which determines the root shape of the tooth.

The dental papilla contains cells that develop into odontoblasts, which are dentin-forming cells. Additionally, the junction between the dental papilla and inner enamel epithelium determines the crown shape of a tooth. Mesenchymal cells within the dental papilla are responsible for formation of tooth pulp.

The dental follicle gives rise to three important entities: cementoblasts, osteoblasts, and fibroblasts. Cementoblasts form the cementum of a tooth. Osteoblasts give rise to the alveolar bone around the roots of teeth. Fibroblasts develop the periodontal ligaments which connect teeth to the alveolar bone through cementum.

Disturbances to interarch alignment are

a. Excessive overbite where the incisal edge of the maxillary incisors extend to the cervical third of the mandibular incisors

b. Excessive overjet where the maxillary teeth overjet the mandibular teeth by more than 3mm

c. End-to-end relationship: edge-to edge bite where the anterior teeth meet at there incisal edge with  no overjet or overbite; cusp-to bite where the posterior teeth meet  cusp to cusp with no interdigitation

d. Crossbite where the normal faciolingual relationship of the maxillary to the mandibular teeth is altered for the anterior.teeth. the mandibular  tooth or teeth are facial  rather than lingual to the maxillary teeth for the posterior teeth, normal inercuspaton is not seen

Types of dentitions:

1. Diphyodont. Teeth develop and erupt into their jaws in two generations of teeth. The term literally means two generations of teeth.

2. Monophyodont. a single generation of teeth.

3. Polyphyodont. Teeth develop a lifetime of generations of successional teeth

4. Homodont. all of the teeth in the jaw are alike. They differ from each other only in size.

5. Heterodont. There is distinctive classes of teeth that are regionally specialized.

MANDIBULAR SECOND MOLAR

Facial: When compared to the first molar, the second molar crown is shorter both mesiodistally and from the cervix to the occlusal surface. The two well-developed buccal cusps form the occlusal outline. There is no distal cusp as on the first molar. A buccal developmental groove appears between the buccal cusps and passes midway down the buccal surface toward the cervix.

Lingual: The crown is shorter than that of the first molar. The occlusal outline is formed by the mesiolingual and distolingal cusps.

Proximal: The mesial profile resembles that of the first molar. The distal profile is formed by the distobuccal cusp, distal marginal ridge, and the distolingual cusp. Unlike the first molar, there is no distal fifth cusp.

Occlusal: There are four well developed cusps with developmental grooves that meet at a right angle to form the distinctive "+" pattern characteristic of this tooth.

Contact Points; When moving distally from first to third molar, the proximal surfaces become progressively more rounded. The net effect is to displace the contact area cervically and away from the crest of the marginal ridges.

Roots:-The mandibular second molar has two roots that are smaller than those of the first molar. When compared to first molar roots, those of the second tend to be more parallel and to have a more distal inclination.

THE DECIDUOUS DENTITION

 

I. The Deciduous Dentition

-It is also known as the primary, baby, milk or lacteal dentition.

diphyodont, that is, with two sets of teeth. The term deciduous means literally 'to fall off.'

  There are twenty deciduous teeth that are classified into three classes. There are ten maxillary teeth and ten mandibular teeth. The dentition consists of incisors, canines and molars.

The pre-dentition period.

-This is from birth to six months.

-At this stage, there are no teeth. Clinically, the infant is edentulous

-Both jaws undergo rapid growth; the growth is in three planes of space: downward, forward, and laterally (to the side). Forward growth for the mandible is greater.

-The maxillary and mandibular alveolar processes are not well developed at birth.

-occasionally, there is a neonatal tooth present at birth. It is a supernumerary and is often lost soon after birth.

-At birth, bulges in the developing alveoli precede eruption of the deciduous teeth. At birth, the molar pads can touch.

AGE CHANGES

Progressive apical migration of the dentogingival junction.
Toothbrush abrasion of the area can expose dentin that can cause root caries and tooth mobility.

Histology of the alveolar bone

 

Near the end of the 2nd month of fetal life, mandible and maxilla form a groove that is opened toward the surface of the oral cavity.
As tooth germs start to develop, bony septa form gradually. The alveolar process starts developing strictly during tooth eruption.

The alveolar process is the bone that contains the sockets (alveoli) for the teeth and consists of

a) outer cortical plates
b) a central spongiosa and
c) bone lining the alveolus (bundle bone)

The alveolar crest is found 1.5-2.0 mm below the level of the CEJ.
If you draw a line connecting the CE junctions of adjacent teeth, this line should be parallel to the alveolar crest. If the line is not parallel, then there is high probability of periodontal disease.

Bundle Bone

The bundle bone provides attachment to the periodontal ligament fibers. It is perforated by many foramina that transmit nerves and vessels (cribiform plate). Embedded within the bone are the extrinsic fiber bundles of the PDL mineralized only at the periphery. Radiographically, the bundle bone is the lamina dura. The lining of the alveolus is fairly smooth in the young but rougher in the adults.

Clinical considerations

Resorption and regeneration of alveolar bone
This process can occur during orthodontic movement of teeth. Bone is resorbed on the side of pressure and opposed on the site of tension.

Osteoporosis
Osteoporosis of the alveolar process can be caused by inactivity of tooth that does not have an antagonist

Explore by Exams