Talk to us?

Dental Anatomy - NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

HISTOLOGY OF THE ODONTOBLAST

Formation of Dentin

Mantle dentin: First formed dentin
Type I collagen with ground substance
Formation of the odontoblast process

Matrix vesicles
Appearance of hydroxyapatite crystals
 

Predentin
Primary physiologic (circumpulpal) dentin
All organic matrix is formed from odontoblasts
Smaller collagen fibers
Presence of phosphophoryn

Mineralization
Globular calcification
Interglobular dentin: Areas of incomplete calcification
Incremental lines of von Ebner: Daily, 4mm of organic matrix is deposited. Also every 5 days the arrangement of collagen fibers changes. This creates the incremental lines of von Ebner.
Intratubular dentin

Dentin tubules
S-shaped in the coronal aspect, straight in root dentin

Von Korff fibers
They are an artifact

Cementum & Cementogenesis

Cementum formation is called cementogenesis and occurs late in the development of teeth. Cementoblasts are the cells responsible for cementogenesis. Two types of cementum form: cellular and acellular.

Acellular cementum forms first. The cementoblasts differentiate from follicular cells, which can only reach the surface of the tooth's root once Hertwig's Epithelial Root Sheath (HERS) has begun to deteriorate. The cementoblasts secrete fine collagen fibrils along the root surface at right angles before migrating away from the tooth. As the cementoblasts move, more collagen is deposited to lengthen and thicken the bundles of fibers. Noncollagenous proteins, such as bone sialoprotein and osteocalcin, are also secreted. Acellular cementum contains a secreted matrix of proteins and fibers. As mineralization takes place, the cementoblasts move away from the cementum, and the fibers left along the surface eventually join the forming periodontal ligmaments.

Cellular cementum develops after most of the tooth formation is complete and after the tooth occludes (in contact) with a tooth in the opposite arch. This type of cementum forms around the fiber bundles of the periodontal ligaments. The cementoblasts forming cellular cementum become trapped in the cementum they produce.

The origin of the formative cementoblasts is believed to be different for cellular cementum and acellular cementum. One of the major current hypotheses is that cells producing cellular cementum migrate from the adjacent area of bone, while cells producing acellular cementum arise from the dental follicle. Nonetheless, it is known that cellular cementum is usually not found in teeth with one root. In premolars and molars, cellular cementum is found only in the part of the root closest to the apex and in interradicular areas between multiple roots.

MANDIBULAR FIRST BICUSPID

Facial: The outline is very nearly symmetrical bilaterally, displaying a large, pointed buccal cusp. From it descends a large, well developed buccal ridge.

Lingual: This tooth has the smallest and most ill-defined lingual cusp of any of the premolars. A distinctive feature is the mesiolingual developmental groove

Proximal: The large buccal cusp tip is centered over the root tip, about at the long axis of this tooth. The very large buccal cusp and much reduced lingual cusp are very evident. You should keep in mind that the mesial marginal ridge is more cervical than the distal contact ridge; each anticipate the shape of their respective adjacent teeth.

Occlusal: The occlusal outline is diamond-shaped. The large buccal cusp dominates the occlusal surface. Marginal ridges are well developed and the mesiolingual developmental groove is consistently present. There are mesial and distal fossae with pits,

Contact Points: When viewed from the facial, each contact area/height of curvature is at about the same height.

Root Surface:-The root of the mandibular first bicuspid is usually single, but on occasion can be bifurcated (two roots).

 

Maxillary First Deciduous Molar.

-The notation is B or I.

-It looks a bit like an upper 1st premolar.

-There are three roots.

-It has a strong bulbous enamel bulge that protrudes buccally at the mesial.

-It is the smallest of the deciduous molars in crown height and in the mesiodistal dimension.

AGE CHANGES

Progressive apical migration of the dentogingival junction.
Toothbrush abrasion of the area can expose dentin that can cause root caries and tooth mobility.

Histology of the alveolar bone

 

Near the end of the 2nd month of fetal life, mandible and maxilla form a groove that is opened toward the surface of the oral cavity.
As tooth germs start to develop, bony septa form gradually. The alveolar process starts developing strictly during tooth eruption.

The alveolar process is the bone that contains the sockets (alveoli) for the teeth and consists of

a) outer cortical plates
b) a central spongiosa and
c) bone lining the alveolus (bundle bone)

The alveolar crest is found 1.5-2.0 mm below the level of the CEJ.
If you draw a line connecting the CE junctions of adjacent teeth, this line should be parallel to the alveolar crest. If the line is not parallel, then there is high probability of periodontal disease.

Bundle Bone

The bundle bone provides attachment to the periodontal ligament fibers. It is perforated by many foramina that transmit nerves and vessels (cribiform plate). Embedded within the bone are the extrinsic fiber bundles of the PDL mineralized only at the periphery. Radiographically, the bundle bone is the lamina dura. The lining of the alveolus is fairly smooth in the young but rougher in the adults.

Clinical considerations

Resorption and regeneration of alveolar bone
This process can occur during orthodontic movement of teeth. Bone is resorbed on the side of pressure and opposed on the site of tension.

Osteoporosis
Osteoporosis of the alveolar process can be caused by inactivity of tooth that does not have an antagonist

Enamel

 

Structural characteristics and microscopic features

a.  Enamel rods or prisms

 

(1) Basic structural unit of enamel.

 

(2) Consists of tightly packed hydroxyapatite crystals. Hydroxyapatite crystals in enamel are four times larger and more tightly packed than hydroxyapatite found in other calcified

tissues (i.e., it is harder than bone).

 

(3) Each rod extends the entire thickness of enamel and is perpendicular to the dentinoenamel junction (DEJ).
 

b. Aprismatic enamel

 

(1) The thin outer layer of enamel found on the surface of newly erupted teeth.

(2) Consists of enamel crystals that are aligned perpendicular to the surface.

(3) It is aprismatic (i.e., prismless) and is more mineralized than the enamel beneath it.

(4) It results from the absence of Tomes processes on the ameloblasts during the final stages of enamel deposition.

 

c. Lines of Retzius (enamel striae)

 

(1) Microscopic features

 (a) In longitudinal sections, they are observed as brown lines that extend from the DEJ to the

tooth surface.

 (b) In transverse sections, they appear as dark, concentric rings similar to growth rings in a tree.
 

(2) The lines appear weekly during the formation of enamel.
 

(3) Although the cause of striae formation is unknown, the lines may represent appositional or incremental growth of enamel. They may also result from metabolic disturbances of ameloblasts.


(4) Neonatal line

(a) An accentuated, dark line of Retzius that results from the effect of physiological changes

on ameloblasts at birth.

(b) Found in all primary teeth and some cusps of permanent first molars.

 

d. Perikymata

(1) Lines of Retzius terminate on the tooth surface in shallow grooves known a perikymata.

(2) These grooves are usually lost through wear but may be observed on the surfaces of developing teeth or nonmasticatory surfaces of formed teeth.
 

e. Hunter-Schreger bands

(1) Enamel rods run in different directions. In longitudinal sections, these changes in direction result in a banding pattern known as HunterSchreger bands.

 

(2) These bands represent an optical phenomenon of enamel and consist of a series of  alternating dark and light lines when the section is viewed with reflected or polarized

light.

 

f. Enamel tufts

(1) Consist of hypomineralized groups of enamel rods.

(2) They are observed as short, dark projections found near or at the DEJ.

(3) They have no known clinical significance.

 

g. Enamel lamellae
 

(1) Small, sheet-like cracks found on the surface of enamel that extend its entire thickness.


(2) Consist of hypocalcified enamel.


(3) The open crack may be filled with organic material from leftover enamel organ components, connective tissues of the developing tooth, or debris from the oral cavity.

 

(4) Both enamel tufts and lamellae may be likened to geological faults in mature enamel.
 

h. Enamel spindle
 

(1) Remnants of odontoblastic processes that become trapped after crossing the DEJ during the differentiation of ameloblasts.
 

(2) Spindles are more pronounced beneath the cusps or incisal edges of teeth (i.e., areas where occlusal stresses are the greatest).
 

HISTOLOGIC CHANGES OF THE PULP

Regressive changes


Pulp decreases in size by the deposition of dentin.
This can be caused by age, attrition, abrasion, operative procedures, etc.
Cellular organelles decrease in number.

Fibrous changes

They are more obvious in injury rather than aging. Occasionally, scarring may also be apparent.

Pulpal stones or denticles

They can be: a)free, b)attached and/or c)embedded. Also they are devided in two groups: true or false. The true stones (denticles) contain dentinal tubules. The false predominate over the the true and are characterized by concentric layers of calcified material.

Diffuse calcifications

Calcified deposits along the collagen fiber bundles or blood vessels may be observed. They are more often in the root canal portion than the coronal area.

Histology of the Cementum

Cementum is a hard connective tissue that derives from ectomesenchyme.

Embryologically, there are two types of cementum:
Primary cementum: It is acellular and develops slowly as the tooth erupts. It covers the coronal 2/3 of the root and consists of intrinsic and extrinsic fibers (PDL).
Secondary cementum: It is formed after the tooth is in occlusion and consists of extrinsic and intrinsic (they derive from cementoblasts) fibers. It covers mainly the root surface.

Functions of Cementum

It protects the dentin (occludes the dentinal tubules)
It provides attachment of the periodontal fibers
It reverses tooth resorption

Cementum is composed of 90% collagen I and III and ground substance.
50% of cementum is mineralized with hydroxyapatite. Thin at the CE junction, thicker apically.

Explore by Exams