Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

The mixed dentition

I. Transition dentition between 6 and 12 years of age with primary tooth exfoliation and permanent tooth eruption

2. Its characteristic features have led this to be called the ugly duckling stage because of

a. Edentulated areas

b. Disproportionately sized teeth

c. Various clinical crown heights

d. Crowding

e. Enlarged and edematous gingiva

f. Different tooth colors

 lntraarch relationship refers to the alignment of the teeth within an arch

1. In an ideal alignment teeth should contact at their proximal crests of curvature. A continuous arch form is observed in occlusal view

Curves of the occlusal plane (a line connecting the cusp tips of the canines, premolars, and molars) are observed from the proximal view

 

Curve of Spee: anterior to posterior curve; for mandibular teeth the curve is concave and for maxillary teeth it is convex

Curve of Wilson- medial to lateral curve for mandibular teeth the curve is also convex and for the maxillary it is convex

2. Contact does not always exist Some permanent dentitions have normal spacing

Primary dentitions often have developmental spacing in the anterior area: some primary den titions have a pattern of spacing called primate spaces between the primary maxillary lateral incisors and canine and between the mandibular canine and first mo1ar

Disturbances to the intraarch alignment are described as

a. Qpen contact where interproximal space exist  because of missing teeth oral habits, dental disease, or overdeveloped frena

b. where contact or position is at an unexpected area because of developmental disturbances, crowding, dental caries or periodontal ligament for their misplaced position: facial, lingual. mesial, supra(supraerupted) infra (infraerupted) and torso (rotated) version

The very first histological evidence of tooth development appear during the second month of intrauterine life. Calcification of deciduous incisors begins at 3-4 months in utero.

Interarch relationship can be  viewed from a stationary (fixed) and a dynamic (movable ) perspective

1.Stationary Relationship

a) .Centric Relation is the most superior relationship of the condyle of the mandible to the articular fossa of the temporal bone as determined by the bones ligaments. and muscles of the temporomandibular joint; in an ideal dentition it is the same as centric occlusion

Centric occlusion is habitual occlusion where maximum intercuspation occurs

The characteristics of centric occlusion are

(1) Overjet: or that characteristic of maxillary teeth to overlap the mandibular teeth in a horizontal direction by 1 to 2 mm the maxilla arch is slightly larger; functions to protect the narrow edge of the incisors and provide for an intercusping relation of posterior teeth

(2) Overbite or that characteristic of maxillary anterior teeth to overlap the mandibular anterior teeth in a vertical direction by a third of the lower crown height facilitates scissor like function of incisors

(3) Intercuspation. or that characteristic of posterior teeth to intermesh in a faciolingual direction  The mandibular facial and maxillary lingual cusp  are centric cusps yhat contact interocclusally in the opposing arch

(4) Interdigitation, or that characteristic_of that tooth to  articulate with two opposing teeth (except for the mandibular central incisors and the maxillary last molars); a mandibular tooth occludes with the same tooth in the upper arch and the one mesial to it; a maxillary tooth occludes with the same tooth in the mandibular arch and the one distal to it.

2. Dynamic interarch relationshjps are result of functional mandibular movements that start and end with centric  occlusion during mastication

a. Mandibular movements are

(1) Depression (opening)

(2) Elevation (closing)

(3) Protrusion (thrust forward)

(4) Retrusion (bring back)

(5) Lateral movements right and left; one side is always the working side and one the balancing or nonworking side

b. Mandibular movements from centric occlusion are guided by the maxillary teeth

(1) Protrusion is guided by the incisors called incisal guidence

(2) Lateral movments are guided by the Canines on the working side in young, unworn dentitions (cuspid rise or cuspid protected occlusion); guided by incisors and posterior teeth in older worn. dentition (incisal/group guidance)

c. As mandibular movements commence from centric occlusion, posterior teeth should disengage in protrusion the posterior teeth on the balancing side should disengage in lateral movement

d. If tooth contact occurs where teeth should be disengaged, occlusal interference or premature contacts exist.

HISTOLOGY OF SALIVARY GLANDS

Parotid: so-called watery serous saliva rich in amylase
Submandibular gland: more mucinous
Sublingual: viscous saliva

Parotid Gland:  The parotid is a serous secreting gland.

There are also fat cells in the parotid.

 

Submandibular Gland

This gland is serous and mucous secreting.

There are serous demilunes

This gland is more serous than mucous

Also fat cells

 

Sublingual Gland

Serous and mucous secreting

Serous cells in the form of demilunes on the mucous acini.

more mucous than serous cells

Minor Salivary Glands

Minor salivary glands are not found within gingiva and anterior part of the hard palate
Serous minor glands=von Ebner below the sulci of the circumvallate and folliate papillae of the tongue; palatine, glossopalatine glands are pure mucus; some lingual glands are also pure mucus

Functions

Protection: lubricant (glycoprotein); barrier against noxious stimuli; microbial toxins and minor traumas; washing non-adherent and acellular debris; calcium-binding proteins: formation of salivary pellicle
Buffering: bacteria require specific pH conditions; plaque microorganisms produce acids from sugars; phosphate ions and bicarbonate
Digestion: neutralizes esophageal contents, dilutes gastric chyme; forms food bolus; brakes starch
Taste: permits recognition of noxious substances; protein gustin necessary for growth and maturation of taste buds
Antimicrobial: lysozyme hydrolyzes cell walls of some bacteria; lactoferrin binds free iron and deprives bacteria of this essential element; IgA agglutinates microorganisms
Maintenance of tooth integrity: calcium and phosphate ions; ionic exchange with tooth surface
Tissue repair: bleeding time of oral tissues shorter than other tissues; resulting clot less solid than normal; remineralization

Pulp

1. Four zones—listed from dentin inward

a. Odontoblastic layer

(1) Contains the cell bodies of odontoblasts.

 

Note: their processes remain in dentinal tubules.

 

(2) Capillaries, nerve fibers, and dendritic cells may also be present.

 

b. Cell-free or cell-poor zone (zone of Weil)

(1) Contains capillaries and unmyelinated nerve fibers.

 

c. Cell-rich zone

(1) Consists mainly of fibroblasts. Macrophages, lymphocytes, and dendritic cells may also be present.


d. The pulp (pulp proper, central zone)

(1) The central mass of the pulp.

(2) Consists of loose connective tissue, larger vessels, and nerves. Also contains fibroblasts and pulpal cells.


2. Pulpal innervation

a. When pulpal nerves are stimulated, they can only transmit one signal pain.

b. There are no proprioceptors in the pulp.

 

c. Types of nerves:

(1) A-delta fibers

(a) Myelinated sensory nerve fibers.

(b) Stimulation results in the sensation of fast, sharp pain.

(c) Found in the coronal (odontoblastic) area of the pulp.


(2) C-fibers

(a) Unmyelinated sensory nerve fibers.

(b) Transmits information of noxious stimuli centrally.

(c) Stimulation results in pain that is slower, duller, and more diffuse in nature.

(d) Found in the central region of the pulp.


(3) Sympathetic fibers

(a) Found deeper within the pulp.

(b) Sympathetic stimulation results in vasoconstriction of vessels.

Disturbances to interarch alignment are

a. Excessive overbite where the incisal edge of the maxillary incisors extend to the cervical third of the mandibular incisors

b. Excessive overjet where the maxillary teeth overjet the mandibular teeth by more than 3mm

c. End-to-end relationship: edge-to edge bite where the anterior teeth meet at there incisal edge with  no overjet or overbite; cusp-to bite where the posterior teeth meet  cusp to cusp with no interdigitation

d. Crossbite where the normal faciolingual relationship of the maxillary to the mandibular teeth is altered for the anterior.teeth. the mandibular  tooth or teeth are facial  rather than lingual to the maxillary teeth for the posterior teeth, normal inercuspaton is not seen

Explore by Exams