Talk to us?

Dental Anatomy - NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Bell stage

The bell stage is known for the histodifferentiation and morphodifferentiation that takes place. The dental organ is bell-shaped during this stage, and the majority of its cells are called stellate reticulum because of their star-shaped appearance. Cells on the periphery of the enamel organ separate into three important layers. Cuboidal cells on the periphery of the dental organ are known as outer enamel epithelium.The cells of the enamel organ adjacent to the dental papilla are known as inner enamel epithelium. The cells between the inner enamel epithelium and the stellate reticulum form a layer known as the stratum intermedium. The rim of the dental organ where the outer and inner enamel epithelium join is called the cervical loop

Other events occur during the bell stage. The dental lamina disintegrates, leaving the developing teeth completely separated from the epithelium of the oral cavity; the two will not join again until the final eruption of the tooth into the mouth

The crown of the tooth, which is influenced by the shape of the internal enamel epithelium, also takes shape during this stage. Throughout the mouth, all teeth undergo this same process; it is still uncertain why teeth form various crown shapes—for instance, incisors versus canines. There are two dominant hypotheses. The "field model" proposes there are components for each type of tooth shape found in the ectomesenchyme during tooth development. The components for particular types of teeth, such as incisors, are localized in one area and dissipate rapidly in different parts of the mouth. Thus, for example, the "incisor field" has factors that develop teeth into incisor shape, and this field is concentrated in the central incisor area, but decreases rapidly in the canine area. The other dominant hypothesis, the "clone model", proposes that the epithelium programs a group of ectomesenchymal cells to generate teeth of particular shapes. This group of cells, called a clone, coaxes the dental lamina into tooth development, causing a tooth bud to form. Growth of the dental lamina continues in an area called the "progress zone". Once the progress zone travels a certain distance from the first tooth bud, a second tooth bud will start to develop. These two models are not necessarily mutually exclusive, nor does widely accepted dental science consider them to be so: it is postulated that both models influence tooth development at different times.Other structures that may appear in a developing tooth in this stage are enamel knots, enamel cords, and enamel niche.

Cap stage

The first signs of an arrangement of cells in the tooth bud occur in the cap stage. A small group of ectomesenchymal cells stops producing extracellular substances, which results in an aggregation of these cells called the dental papilla. At this point, the tooth bud grows around the ectomesenchymal aggregation, taking on the appearance of a cap, and becomes the enamel (or dental) organ. A condensation of ectomesenchymal cells called the dental follicle surrounds the enamel organ and limits the dental papilla. Eventually, the enamel organ will produce enamel, the dental papilla will produce dentin and pulp, and the dental follicle will produce all the supporting structures of a tooth

THE DECIDUOUS DENTITION

 

I. The Deciduous Dentition

-It is also known as the primary, baby, milk or lacteal dentition.

diphyodont, that is, with two sets of teeth. The term deciduous means literally 'to fall off.'

  There are twenty deciduous teeth that are classified into three classes. There are ten maxillary teeth and ten mandibular teeth. The dentition consists of incisors, canines and molars.

MANDIBULAR FIRST MOLAR

It is the first permanent tooth to erupt.

Facial Surface:- The lower first permanent molar has the widest mesiodistal diameter of all of the molar teeth. Three cusps cusps separated by developmental grooves make on the occlusal outline The mesiobuccal cusp is usually the widest of the cusps. The mesiobuccal cusp is generally considered the largest of the five cusps. The distal root is usually less curved than the mesial root.

Lingual: Three cusps make up the occlusal profile in this view: the mesiolingual, the distolingual, and the distal cusp which is somewhat lower in profile. The mesiobuccal cusp is usually the widest and highest of the three. A short lingual developmental groove separates the two lingual cusps

Proximal: The distinctive height of curvature seen in the cervical third of the buccal surface is called the cervical ridge. The mesial surface may be flat or concave in its cervical third . It is highly convex in its middle and occlusal thirds. The occlusal profile is marked by the mesiobuccal cusp, mesiolingual cusp, and the mesial marginal ridge that connects them. The mesial root is the broadest buccolingually of any of the lower molar roots. The distal surface of the crown is narrower buccolingually than the mesial surface. Three cusps are seen from the distal aspect: the distobuccal cusp, the distal cusp, and the distolingual cusp.

Occlusal There are five cusps. Of them, the mesiobuccal cusp is the largest, the distal cusp is the smallest. The two buccal grooves and the single lingual groove form the "Y" patern distinctive for this tooth

Roots :-The tooth has two roots, a mesial and a distal.

Contact Points; The mesial contact is centered buccolingually just below the marginal ridge. The distal contact is centered over the distal root, but is buccal to the center point of the distal marginal ridge.

Roots: Lower molars have mesial and distal roots. In the first, molar, the mesial root is the largest. It has a distal curvature. The distal root has little curvature and projects distally.

 

Periodontal ligament

Composition

a. Consists mostly of collagenous (alveolodental) fibers.
Note: the portions of the fibers embedded in cementum and the alveolar bone proper are known as Sharpey’s fibers.

b. Oxytalan fibers (a type of elastic fiber) are also present. Although their function is unknown, they may play a role in the regulation of vascular flow.

c. Contains mostly type I collagen, although smaller amounts of type III and XII collagen are also present.

d. Has a rich vascular and nerve supply.

Both sensory and autonomic nerves are present.

(1) The sensory nerves in the PDL differ from pulpal nerves in that PDL nerve endings can detect both proprioception (via mechanoreceptors) and pain (via nociceptors).

(2) The autonomic nerve fibers are associated with the regulation of periodontal vascular flow.

(3) Nerve fibers may be myelinated (sensory) or unmyelinated (sensory or autonomic).

Cells

a. Cells present in the PDL include fibroblasts; epithelial cells; cementoblasts and cementoclasts; osteoblasts and osteoclasts; and immune cells such as macrophages, mast cells, or eosinophils.

b. These cells play a role in forming or destroying cementum, alveolar bone, or PDL.

c. Epithelial cells often appear in clusters, known as rests of Malassez.

Types of alveolodental fibers

a. Alveolar crest fibers
—radiate downward from cementum, just below the cementoenamel junction (CEJ), to the crest of alveolar bone.

b. Horizontal fibers—radiate perpendicular to the tooth surface from cementum to alveolar bone, just below the alveolar crest.

c. Oblique fibers

(1) Radiate downward from the alveolar bone to cementum.

(2) The most numerous type of PDL fiber.

(3) Resist occlusal forces that occur along the long axis of the tooth.

d. Apical fibers

(1) Radiate from the cementum at the apex of the tooth into the alveolar bone.

(2) Resist forces that pull the tooth in an occlusal direction (i.e., forces that try to pull the tooth from its socket).

e. Interradicular fibers

(1) Only found in the furcal area of multi-rooted teeth.

(2) Resist forces that pull the tooth in an occlusal direction.

Gingival fibers

a. The fibers of the gingival ligament are not strictly part of the PDL, but they play a role in the maintainence of the periodontium.

b. Gingival fibers are packed in groups and are found in the lamina propria of gingiva

c. Gingival fiber groups:

(1) Transseptal (interdental) fibers

(a) Extend from the cementum of one tooth (just apical to the junctional epithelium), over the alveolar crest, to the corresponding area of the cementum of the adjacent tooth.

(b) Collectively, these fibers form the interdental ligament , which functions to resist rotational forces and retain adjacent teeth in interproximal contact.

(c) These fibers have been implicated as a major cause of postretention relapse of teeth that have undergone orthodontic treatment.

(2) Circular (circumferential) fibers

(a) Extend around tooth near the CEJ.

(b) Function in binding free gingiva to the tooth and resisting rotational forces.

(3) Alveologingival fibers—extend from the alveolar crest to lamina propria of free and attached gingiva.

(4) Dentogingival fibers—extend from cervical cementum to the lamina propria of free and attached gingiva.

(5) Dentoperiosteal fibers—extend from cervical cementum, over the alveolar crest, to the periosteum of the alveolar bone.

MAXILLARY CENTRAL INCISORS

Viewed mesially or distally, a maxillary central incisor looks like a wedge, with the point of the wedge at the incisal (cutting) edge of the tooth.

Facial Surface- The mesial margin is nearly straight and meets the incisal edge at almost a 90° angle, but the distal margin meets the incisal edge in a curve. The incisal edge is straight, but the cervical margin is curved like a half moon. Two developmental grooves are on the facial surface.

Lingual Surface:- The lingual aspect presents a distinctive lingual fossa that is bordered by mesial and distal marginal ridges, the incisal edge, and the prominent cingulum at the gingival. Sometimes a deep pit, the lingual pit, is found in conjunction with a cingulum.

 

Incisal: The crown is roughly triangular in outline; the incisal edge is nearly a straight line, though slightly crescent shaped

Contact Points: The mesial contact point is just about at the incisal, owing to the very sharp mesial incisal angle. The distal contact point is located at the junction of the incisal third and the middle third.

Root Surface:-As with all anterior teeth, the root of the maxillary central incisor is single. This root is from one and one-fourth to one and one-half times the length of the crown. Usually, the apex of the root is inclined slightly distally.

Periodontal ligament development

Cells from the dental follicle give rise to the periodontal ligaments (PDL).

Formation of the periodontal ligaments begins with ligament fibroblasts from the dental follicle. These fibroblasts secrete collagen, which interacts with fibers on the surfaces of adjacent bone and cementum. This interaction leads to an attachment that develops as the tooth erupts into the mouth. The occlusion, which is the arrangement of teeth and how teeth in opposite arches come in contact with one another, continually affects the formation of periodontal ligaments. This perpetual creation of periodontal ligaments leads to the formation of groups of fibers in different orientations, such as horizontal and oblique fibers.

Explore by Exams