NEET MDS Lessons
Dental Anatomy
Classification of Cementum
- Embryologically
Primary and secondary
2. According to cellular component
Acellular: Thin, Amorphous, First layer to seal the dentin tubules
Cellular: Thick, Better structure, Apical surface
Layers of cellular and acellular cementum alternate (randomly)
3. Based on the origin of the collagenous matrix
Extrinsic
Intrinsic
Mixed
4. Combined classification
a. Primary acellular intinsic fiber cementum
b. Primary acellualar extrinsic fiber cementum
c. Secondary cellular intrinsic fiber cementum
d. Secondary cellular mixed fiber cementum
e. Acellular afibrillar cementum
5. Depending on the location and patterning
Intermediate and mixed stratified cementum
Participating Cells
Cementoblasts
Active
Cells are round, plump with basophilic cytoplasm (rough endoplasmic reticulum)
Inactive
Cells have little cytoplasm
Cementocytes
- Cementocyte lacuna
- cementocyte canaliculus
Cells have fewer organelles compared to cementoblasts. They are found in lacunae and have numerous processes toward the periodontal ligament. Eventually they die due to avascularity
Cementicles
a) free
b) attached
c) embedded
Dentin
1. Composition
a. Inorganic (70%)—calcium hydroxyapatite crystals.
b. Organic (30%)—water and type I collagen.
2. Types of dentin
a. Primary dentin
(1) Dentin formed during tooth development, before completion of root formation.
It constitutes the majority of dentin found in a tooth.
(2) It consists of a normal organization of dentinal tubules.
(3) Circumpulpal dentin
(a) The layer of primary dentin that surrounds the pulp chamber. It is formed after the mantle dentin.
(b) Its collagen fibers are parallel to the DEJ.
b. Secondary dentin
(1) Dentin formed after root formation is complete.
(2) Is deposited unevenly around the pulp chamber, forming along the layer of dentin closest to the pulp.
It therefore contributes to the decrease in the size of the pulp chamber as one ages.
(3) It consists of a normal, or slightly less regular, organization of dentinal tubules. However,
as compared to primary dentin, it is deposited at a slower rate.
(4) Although the dentinal tubules in secondary dentin can be continuous with those in primary
dentin, there is usually a tubular angle change between the two layers.
c. Tertiary (reparative, reactive) dentin
(1) Dentin that is formed in localized areas in response to trauma or other stimuli such as caries, tooth wear, or dental work.
(2) Its consistency and organization vary. It has no defined dentinal tubule pattern
d. Mantle dentin
(1) The outermost layer of dentin
(2) Is the first layer of dentin laid down by odontoblasts adjacent to the DEJ.
(3) Is slightly less mineralized than primary dentin.
(4) Has collagen fibers that are perpendicular to the DEJ.
(5) Dentinal tubules branch abundantly in this area.
e. Sclerotic (transparent) dentin
(1) Describes dentinal tubules that have become occluded with calcified material .
(2) Occurs when the odontoblastic processes retreat, filling the dentinal tubule with calcium phosphate crystals.
(3) Occurs with aging.
f. Dead tracts
(1) When odontoblasts die, they leave behind empty dentinal tubules, or dead tracts.
(2) Occurs with aging or trauma.
(3) Empty tubules are potential paths for bacterial invasion.
3. Structural characteristics and microscopic features:
a. Dentinal tubules
(1) Tubules extend from the DEJ to the pulp chamber.
(2) The tubules taper peripherally (i.e., their diameters are wider as they get closer to the pulp). Since the tubules are distanced farther apart at the periphery, the density of tubules is greater closer to the pulp.
(3) Each tubule contains an odontoblastic process or Tomes’ fiber.
Odontoblastic processes are characterized by the presence of a network of microtubules, with
Occasional mitochondria and vesicles present.
Note: the odontoblast’s cell body remains in the pulp chamber.
(4) Coronal tubules follow an S-shaped path, which may result from the crowding of odontoblasts as they migrate toward the pulp during dentin formation.
b. Peritubular dentin (intratubular dentin)
(1) Is deposited on the walls of the dentinal tubule, which affects (i.e., narrows)the diameter of the tubule .
(2) It differs from intertubular dentin by lacking a collagenous fibrous matrix. It is also more mineralized than intertubular dentin.
c. Intertubular dentin
(1) The main part of dentin, which fills the space between dentinal tubules
(2) Is mineralized and contains a collagenous matrix.
d. Interglobular dentin
(1) Areas of hypomineralized or unmineralized dentin caused by the failure of globules or calcospherites to fuse uniformly with mature dentin.
(2) Dentinal tubules are left undisturbed as they pass through interglobular dentin; however,
No peritubular dentin is present.
(3) Interglobular dentin is found in the:
(a) Crown—just beneath the mantle dentin.
(b) Root—beneath the dentinocemental junction, giving the root the appearance of a granular
layer (of Tomes).
e. Incremental lines
(1) Dentin is deposited at a daily rate of approximately 4 microns.
(2) As dentin is laid down, small differences in collagen fiber orientation result in the formation of incremental lines.
(3) Called imbrication lines of von Ebner.
(a) Every 5 days, or about every 20 µm, the changes in collagen fiber orientation appear more
accentuated. This results in a darker staining line, known as the imbrication line of von
Ebner.
(b) These lines are similar to the lines of Retzius seen in enamel.
f. Contour lines of Owen
(1) An optical phenomenon that occurs when the secondary curvatures of adjacent dentinal tubules coincide, resulting in the appearance of lines known as contour lines of Owen.
(2) Contour lines of Owen may also refer to lines that appear similar to those just described; however, these lines result from disturbances in mineralization.
g. Granular layer of Tomes
(1) A granular or spotty-appearing band that can be observed on the root surface adjacent to the dentinocemental junction, just beneath the cementum.
MAXILLARY SECOND BICUSPID
smaller in dimensions. The cusps are not as sharp as the maxillary first bicuspid and have only one root.
Facial: This tooth closely resembles the maxillary first premolar but is a less defined copy of its companion to the mesial. The buccal cusp is shorter, less pointed, and more rounded than the first.
Lingual: Again, this tooth resembles the first. The lingual cusp, however, is more nearly as large as the buccal cusp.
Proximal: Mesial and distal surfaces are rounded. The mesial developmental depression and mesial marginal ridge are not present on the second premolar.
Occlusal: The crown outline is rounded, ovoid, and is less clearly defined than is the first.
Contact Points; When viewed from the facial, the distal contact area is located more cervically than is the mesial contact area.
Transient structures during tooth development
Enamel knot: Thickening of the internal dental epithelium at the center of the dental organ.
Enamel cord: Epithelial proliferation that seems to divide the dental organ in two.
Review the role of these two structures
Enamel niche: It is an artifact that is produced during section of the tissue. It occurs because the dental organ is a sheet of proliferating cells rather than a single strand. It looks like a concavity that contains ectomesenchyme.
ARTICULAR SURFACES COVERED BY FIBROUS TISSUE
TMJ is an exception form other synovial joints. Two other joints, the acromio- and sternoclavicular joints are similar to the TMJ. Mandible & clavicle derive from intramembranous ossificiation.
Histologic
- Fibrous layer: collagen type I, avascular (self-contained and replicating)
- Proliferating zone that formes condylar cartilage
- Condylar cartilage is fibrocartilage that does not play role in articulation nor has formal function
- Capsule: dense collagenous tissue (includes the articular eminence)
- Synovial membrane: lines capsule (does not cover disk except posterior region); contains folds (increase in pathologic conditions) and villi
Two layers: a cellular intima (synovial cells in fiber-free matrix) and a vascular subintima
Synovial cells: A (macrophage-like) syntesize hyaluronate
B (fibroblast-like) add protein in the fluid
Synovial fluid: plasma with mucin and proteins, cells
Liquid environment: lubrication, ?nutrition - Disk: separates the cavity into two comprartments, type I collagen
anterior and posterior portions
anetiorly it divides into two lamellae one towards the capsule, the other towards the condyle
vascular in the preiphery, avascular in the center - Ligaments: nonelastic collagenous structures. One ligament worth mentioning is the lateral or temporomandibular ligament. Also there are the spheno- and stylomandibular with debatable functional role.
Innervations
|
Ruffini |
Posture |
Dynamic and static balance |
|
Pacini |
Dynamic mechanoreception |
Movement accelerator |
|
Golgi |
Static mechanoreception |
Protection (ligament) |
|
Free |
Pain |
Protection joint |
HISTOLOGY OF THE ODONTOBLAST
Formation of Dentin
Mantle dentin: First formed dentin
Type I collagen with ground substance
Formation of the odontoblast process
Matrix vesicles
Appearance of hydroxyapatite crystals
Predentin
Primary physiologic (circumpulpal) dentin
All organic matrix is formed from odontoblasts
Smaller collagen fibers
Presence of phosphophoryn
Mineralization
Globular calcification
Interglobular dentin: Areas of incomplete calcification
Incremental lines of von Ebner: Daily, 4mm of organic matrix is deposited. Also every 5 days the arrangement of collagen fibers changes. This creates the incremental lines of von Ebner.
Intratubular dentin
Dentin tubules
S-shaped in the coronal aspect, straight in root dentin
Von Korff fibers
They are an artifact
MAXILLARY CENTRAL INCISORS
Viewed mesially or distally, a maxillary central incisor looks like a wedge, with the point of the wedge at the incisal (cutting) edge of the tooth.
Facial Surface- The mesial margin is nearly straight and meets the incisal edge at almost a 90° angle, but the distal margin meets the incisal edge in a curve. The incisal edge is straight, but the cervical margin is curved like a half moon. Two developmental grooves are on the facial surface.
Lingual Surface:- The lingual aspect presents a distinctive lingual fossa that is bordered by mesial and distal marginal ridges, the incisal edge, and the prominent cingulum at the gingival. Sometimes a deep pit, the lingual pit, is found in conjunction with a cingulum.
Incisal: The crown is roughly triangular in outline; the incisal edge is nearly a straight line, though slightly crescent shaped
Contact Points: The mesial contact point is just about at the incisal, owing to the very sharp mesial incisal angle. The distal contact point is located at the junction of the incisal third and the middle third.
Root Surface:-As with all anterior teeth, the root of the maxillary central incisor is single. This root is from one and one-fourth to one and one-half times the length of the crown. Usually, the apex of the root is inclined slightly distally.