NEET MDS Lessons
Dental Anatomy
The pre-dentition period.
-This is from birth to six months.
-At this stage, there are no teeth. Clinically, the infant is edentulous
-Both jaws undergo rapid growth; the growth is in three planes of space: downward, forward, and laterally (to the side). Forward growth for the mandible is greater.
-The maxillary and mandibular alveolar processes are not well developed at birth.
-occasionally, there is a neonatal tooth present at birth. It is a supernumerary and is often lost soon after birth.
-At birth, bulges in the developing alveoli precede eruption of the deciduous teeth. At birth, the molar pads can touch.
ARTICULAR SURFACES COVERED BY FIBROUS TISSUE
TMJ is an exception form other synovial joints. Two other joints, the acromio- and sternoclavicular joints are similar to the TMJ. Mandible & clavicle derive from intramembranous ossificiation.
Histologic
- Fibrous layer: collagen type I, avascular (self-contained and replicating)
- Proliferating zone that formes condylar cartilage
- Condylar cartilage is fibrocartilage that does not play role in articulation nor has formal function
- Capsule: dense collagenous tissue (includes the articular eminence)
- Synovial membrane: lines capsule (does not cover disk except posterior region); contains folds (increase in pathologic conditions) and villi
Two layers: a cellular intima (synovial cells in fiber-free matrix) and a vascular subintima
Synovial cells: A (macrophage-like) syntesize hyaluronate
B (fibroblast-like) add protein in the fluid
Synovial fluid: plasma with mucin and proteins, cells
Liquid environment: lubrication, ?nutrition - Disk: separates the cavity into two comprartments, type I collagen
anterior and posterior portions
anetiorly it divides into two lamellae one towards the capsule, the other towards the condyle
vascular in the preiphery, avascular in the center - Ligaments: nonelastic collagenous structures. One ligament worth mentioning is the lateral or temporomandibular ligament. Also there are the spheno- and stylomandibular with debatable functional role.
Innervations
|
Ruffini |
Posture |
Dynamic and static balance |
|
Pacini |
Dynamic mechanoreception |
Movement accelerator |
|
Golgi |
Static mechanoreception |
Protection (ligament) |
|
Free |
Pain |
Protection joint |
Enamel
Composition: 96% mineral, 4% organic material and water
Crystalline calcium phosphate, hydroxyapatite
Physical characteristics: Hardness compared to mild steel; enamel is brittle
Support from dentin is necessary
Enamel has varies in thickness
Structure of enamel
Ground sections of enamel disclose the information that we have about enamel
Enamel is composed of rods
In the past we used the term prism (do not use)
Enamel rod
The rod has a cylinder-like shape and is composed of crystals that run parallel to the longitudinal axis of the rod. At the periphery of the rod the crystals flare laterally.
Interrod region: surrounds each rod; contain more enamel protein (fish scale appearance)
Rod sheath: boundary where crystals of rods meet those of the interrod region at sharp angles (We used to describe that as a keyhole configuration)
Each ameloblast forms one rod and together with adjacent ameloblasts the interrod region Very close to dentin there is no rod structure since the Tomes' processes develop after the first enamel is formed.
Striae of Retzius and cross striations
Incremental lines
Enamel structure is altered along these lines
Cross striations are also a form of incremental lines highlighting the daily secretory activity of ameloblasts
Bands of Hunter and Schreger
Optical phenomenon produced by changes in rod direction
Gnarled enamel
Twisting of rods around each other over the cusps of teeth
Enamel tufts and lamellae
They are like geologic faults
Tufts project from the DE junction, appear branched and contain greater concentrations of enamel protein than enamel
Lamellae extend from the enamel surface
Enamel spindles
Perikymata
Shallow furrows on surface of enamel formed by the striae of Retzius
MAXILLARY CUSPIDS (CANINE)
The maxillary cuspid is usually the longest tooth in either jaw. canines are considered the corner stones of the dental arch They are the only teeth in the dentition with a single cusp.
Facial Surface:- The facial surface of the crown differs considerably from that of the maxillary central or lateral incisors. In that the incisal edges of the central and lateral incisor are nearly straight, the cuspid has a definite point, or cusp. There are two cutting edges, the mesioincisal and the distoincisal. The distoincisal cutting edge is the longer of the two. The developmental grooves prominent on the facial surface extending two-thirds of the distance from the tip of the cusp to the cervical line. The distal cusp ridge is longer than the mesial cusp ridge
Lingual Surface: Distinct mesial and distal marginal ridges, a well-devloped cingulum, and the cusp ridges form the boundries of the lingual surface. The prominent lingual ridge extends from the cusp tip to the cingulum, dividing the lingual surface into mesial and distal fossae.
Proximal: The mesial and distal aspects present a triangular outline. They resemble the incisors, but are more robust--especially in the cingulum region
Incisal: The asymmetry of this tooth is readily apparent from this aspect. It usually thicker labiolingually than it is mesiodistally. The tip of the cusp is displaced labially and mesial to the central long axis of this tooth.
Root Surface:-The root is single and is the longest root in the arch. It is usually twice the length of the crown.
MANDIBULAR THIRD MOLAR
Facial: The crown is often short and has a rounded outline.
Lingual: Similarly, the crown is short and the crown is bulbous.
Proximal: Mesially and distally, this tooth resembles the first and second molars. The crown of the third molar, however, is shorter than either of the other molars
Occlusal: Four or five cusps may be present. Occlusal surface is a same as of the first or second molar, or poorly developed with many accessory grooves. The occlusal outline is often ovoid and the occlusal surface is constricted. Occasionally, the surface has so many grooves that it is described as crenulated--a condition seen in the great apes
Contact Points; The rounded mesial surface has its contact area more cervical than any other lower molar. There is no tooth distal to the third molar..
Roots:-The roots, two in number, are shorter in length and tend to be fused together. they show a distinct distal curve
Cap stage
The first signs of an arrangement of cells in the tooth bud occur in the cap stage. A small group of ectomesenchymal cells stops producing extracellular substances, which results in an aggregation of these cells called the dental papilla. At this point, the tooth bud grows around the ectomesenchymal aggregation, taking on the appearance of a cap, and becomes the enamel (or dental) organ. A condensation of ectomesenchymal cells called the dental follicle surrounds the enamel organ and limits the dental papilla. Eventually, the enamel organ will produce enamel, the dental papilla will produce dentin and pulp, and the dental follicle will produce all the supporting structures of a tooth
ERUPTION OF THE PERMANENT TOOTH
- At the time at which the deciduous tooth erupts the tooth bud for the permanent tooth has already been building up enamel and dentin.
- When the permanent tooth starts to erupt, pressure on the root of the deciduous tooth causes resorption by the osteoclasts.
- Wolff's law states that when two hard tissues exert pressure on one another the softer of the tissues will be resorbed.
- The dentin and cementum of the root of the deciduous tooth is softer than the enamel of the permanent tooth that is why the root of the deciduous tooth is resorbed.
- Most permanent teeth have erupted and have been in use for 2 years before the root is completely formed.