Talk to us?

Dental Anatomy - NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Nerve and vascular formation

Frequently, nerves and blood vessels run parallel to each other in the body, and the formation of both usually takes place simultaneously and in a similar fashion. However, this is not the case for nerves and blood vessels around the tooth, because of different rates of development.

Nerve formation

Nerve fibers start to near the tooth during the cap stage of tooth development and grow toward the dental follicle. Once there, the nerves develop around the tooth bud and enter the dental papilla when dentin formation has begun. Nerves never proliferate into the enamel organ

Vascular formation

Blood vessels grow in the dental follicle and enter the dental papilla in the cap stage. Groups of blood vessels form at the entrance of the dental papilla. The number of blood vessels reaches a maximum at the beginning of the crown stage, and the dental papilla eventually forms in the pulp of a tooth. Throughout life, the amount of pulpal tissue in a tooth decreases, which means that the blood supply to the tooth decreases with age. The enamel organ is devoid of blood vessels because of its epithelial origin, and the mineralized tissues of enamel and dentin do not need nutrients from the blood.

MAXILLARY SECOND BICUSPID

smaller in dimensions. The cusps are not as sharp as the maxillary first bicuspid and have only one root.

Facial: This tooth closely resembles the maxillary first premolar but is a less defined copy of its companion to the mesial. The buccal cusp is shorter, less pointed, and more rounded than the first.

Lingual: Again, this tooth resembles the first. The lingual cusp, however, is more nearly as large as the buccal cusp.

Proximal: Mesial and distal surfaces are rounded. The mesial developmental depression and mesial marginal ridge are not present on the second premolar.

Occlusal: The crown outline is rounded, ovoid, and is less clearly defined than is the first.

Contact Points; When viewed from the facial, the distal contact area is located more cervically than is the mesial contact area.

Dentin

Composition: 70% inorganic, 20% organic, 10% water by weight and 45%, 33%, and 22% in volume respectively
Hydroxyapatite crystals and collagen type I
Physical characteristics: Harder than bone and softer than enamel
Yellow in color in normal teeth
Radiographic appearance: More radiolucent than enamel

Primary (circumpulpal) dentin: forms most of the tooth
Mantle dentin: first dentin to form; forms the outline of dentin in the adult tooth
Predentin: lines the innermost portion of dentin (faces the pulp)
Secondary dentin: after root formation dentin continues to form, continuous to primary dentin but with structural irregularities
Tertiary dentin: reactive or reparative dentin; may or may not have characteristics of primary dentin; produced in the area of an external stimulus; osteodentin

Dentin is formed by cells called odontoblasts.
These cells derive from the ectomesenchyme and produce the organic matrix that will calcify and become the dentin.
Formation of dentin initiates formation of enamel.
The formation of dentin starts during late bell-stage in the area of the future cusp.

First coronal dentin and then root dentin.

Completion of dentin does not occur until about 18 months after eruption of primary and 2-3 years after eruption of permanent teeth.

The rate of dentin development varies.

The role of the internal (inner) dental (enamel) epithelium
Cuboidal - Columnar (reverse polarization)
Ectomesenchymal cells of the dental papilla become preodontoblasts - odontoblasts
Acellular zone disappears

Histologic features of dentin
Odontoblasts
Dentinal tubules
Extend through the entire thickness of dentin
S-shaped (primary curvatures) path in the crown, less S-shaped in the root, almost straight in the cervical aspect
Secondary curvatures
Tubular microbranches
Presence of fluid
 

Intratubular dentin
Dentin in the tubule that is hypermineralized

The term peritubular dentin should not be used
 

Sclerotic dentin
Dentinal tubules that are occluded with calcified material
Most likely a physiologic response
Reduction of permeability of dentin
 

Intertubular dentin
Dentin between the tubules
 

Interglobular dentin
Areas of unmineralized or hypomineralized dentin
The defect affects mineralization and not the architecture of dentin
 

Incremental lines
Lines of von Ebner: lines associated with 5-day rythmic pattern of dentin deposition
Contour lines of Owen: Originally described by Owen they result from a coincidence of the secondary curvatures between neighboring dentinal tubules.
 

Granular Layer of Tomes
Seen only in ground sections in the root area covered by cementum
Originally, they were thought to be areas of hypomineralization
They are true spaces obtained by sections going through the looped terminal portions dentinal tubules

DE junction :Scalloped area

Enamel tissue with incremental lines of Retzius and dentin tissue with parallel, curved dentinal tubules are in contact at the irregular dentino-enamel junction. The junction often has a scalloped-shaped morphology

DC junction Dentin Cemental Junction

Transient structures during tooth development

Enamel knot: Thickening of the internal dental epithelium at the center of the dental organ.
Enamel cord: Epithelial proliferation that seems to divide the dental organ in two.
 

Review the role of these two structures
Enamel niche: It is an artifact that is produced during section of the tissue. It occurs because the dental organ is a sheet of proliferating cells rather than a single strand. It looks like a concavity that contains ectomesenchyme.

Angle classified these relationships by using the first permanent molars

Normal or neutral occlusion (ideal):

Mesiobuccalgroove of the mandibular first molar align with the mesiobuccal cusp of the max laxy first permanent molar

ClassI  malocclusion  normal molar relationships with alterations to other characteristics of the occlusion such as versions, crossbites, excessive overjets, or overbites

 

Class II malocclusion a distal relation of the mesiobuccal groove of the mandibular first permanent molar to the mesiobuccal cusp of the maxillary first permanent molar

 

Division I: protruded maxillary anterior teeth

Division II: one or more maxillary anterior teeth retruded

Class III  malocclusion a mesial relation of the mesiobuccal groove of the mandibular first permanent molar to the mesiobuccal cusp of the maxillary molar

Development of occlusion.

A. Occlusion  usually means the contact relationship in function. Concepts of occlusion vary with almost every specialty of dentistry.

Centric occlusion is the maximum contact and/or intercuspation of the teeth.

 

B. Occlusion is the sum total of many factors.

1. Genetic factors.

-Teeth can vary in size. Examples are microdontia (very small teeth) and macrodontia (very large teeth). Incidentally, Australian aborigines have the largest molar tooth size—some 35% larger than the smallest molar tooth group

-The shape of individual teeth can vary (such as third molars and the upper lateral incisors.)

-They can vary when and where they erupt, or they may not erupt at all (impaction).

-Teeth can be congenitally missing (partial or complete anodontia), or there can be extra (supernumerary) teeth.

-The skeletal support (maxilla/mandible) and how they are related to each other can vary considerably from the norm.

 

2. Environmental factors.

-Habits can have an affect: wear, thumbsucking, pipestem or cigarette holder usage, orthodontic appliances, orthodontic retainers have an influence on the occlusion.

 

3.Muscular pressure.

-Once the teeth erupt into the oral cavity, the position of teeth is affected by other teeth, both in the same dental arch and by teeth in the opposing dental arch.

-Teeth are affected by muscular pressure on the facial side (by cheeks/lips) and on the lingual side (by the tongue).

 

C. Occlusion constantly changes with development, maturity, and aging.

1 . There is change with the eruption and shedding of teeth as the successional changes from deciduous to permanent dentitions take place.

2. Tooth wear is significant over a lifetime. Abrasion, the wearing away of the occlusal surface reduces crown height and alters occlusal anatomy.

Attrition of the proximal surfaces reduces the mesial-distal dimensions of the teeth and significantly reduces arch length over a lifetime.

Abraision is the wear of teeth by agencies other than the friction of one tooth against another.

Attrition is the wear of teeth by one tooth rubbing against another

3. Tooth loss leaves one or more teeth without an antagonist. Also, teeth drift, tip, and rotate when other teeth in the arch are extracted.

Introduction. The Jaws and Dental Arches

 

The teeth are arranged in upper and lower arches. Those of the upper are called maxillary; those of the lower are mandibular.

 

  1. The maxilla is actually two bones forming the upper jaw; they are rigidly attached to the skull..
  2. The mandible is a horseshoe shaped bone which articulates with the skull by way of the temporomandibular joint the TMJ.
  3. The dental arches, the individual row of teeth forming a tooth row attached to their respective jaw bones have a distinctive shape known as a catenary arch.

Explore by Exams