NEET MDS Lessons
General Pathology
Rocky Mountain Spotted Fever (Spotted Fever; Tick Fever; Tick Typhus)
An acute febrile disease caused by Rickettsia rickettsii and transmitted by ixodid ticks, producing high fever, cough, and rash.
Symptoms and Signs
The incubation period averages 7 days but varies from 3 to 12 days; the shorter the incubation period, the more severe the infection. Onset is abrupt, with severe headache, chills, prostration, and muscular pains. Fever reaches 39.5 or 40° C (103 or 104° F) within several days and remains high (for 15 to 20 days in severe cases),
Between the 1st and 6th day of fever, most patients develop a rash on the wrists, ankles, palms, soles, and forearms that rapidly extends to the neck, face, axilla, buttocks, and trunk. Often, a warm water or alcohol compress brings out the rash. Initially macular and pink, it becomes maculopapular and darker. In about 4 days, the lesions become petechial and may coalesce to form large hemorrhagic areas that later ulcerate
Neurologic symptoms include headache, restlessness, insomnia, delirium, and coma, all indicative of encephalitis. Hypotension develops in severe cases. Hepatomegaly may be present, but jaundice is infrequent. Localized pneumonitis may occur. Untreated patients may develop pneumonia, tissue necrosis, and circulatory failure, with such sequelae as brain and heart damage. Cardiac arrest with sudden death occasionally occurs in fulminant cases.
OEDEMA
Excessive accumulation of fluid in the extra vascular compartment (intersttitial tissues). This includes ascites (peritoneal sac), hydrothorax (pleural cavity) hydropericardium (pericardial space) and anasarca (generalised)
Factors which tend to accumulate interstitial fluid are:
- Intravascular hydrostatic pressure
- Interstitial osmotic pressure.
- Defective lymphatic drainage.
- Increased capillary permeability.
Factors that draw fluid into circulation are:
- Tissue hydrostatic-pressure (tissue tension).
- Plasma osmotic pressure,
Oedema fluid can be of 2 types:
A. Exudate.
It is formed due to increased capillary permeability as in inflammation.
B. Transudate
Caused by alterations of hydrostatic and osmotic pressures.
|
Exudate |
Transudate |
Specific Gravity |
>1.018 |
1.012 |
Protein Content |
High |
Low |
Nature of Protein |
All Plasma Protein |
Albumin mostly |
Spontaneous Clotting |
High(Inflammatory Cells) |
Low |
Local Oedema
1. Inflammatory oedema. Mechanisms are.
- Increased capillary permeability.
- Increased vascular hydrostatic pressure.
- Increased tissue osmotic pressure.
2.Hypersensitivity reactions especially types I and III
3. Venous obstruction :
- Thrombosis.
- Pressure from outside as in pregnancy, tourniquets.
4. Lymphatic obstruction:
- Elephantiasis in fillariasis
- Malignancies (Peau de orange in breast cancer).
Generalized Oedema
1. Cardiac oedema
Factors :Venous pressure increased.
2. Renal oedema
- Acute glomerulonephritis
- Nephrotic syndrome
3. Nutritional (hypoproteinaemic) oedema. it is seen in
- Starvation and Kwashiorkor
- Protein losing enteropathy
4. Hepatic oedema (predominantly ascites)
Factors:
- Fall in plasma protein synthesis
- Raised regional lymphatic and portal venous pressure
5. Oedema due to adrenal corticoids
As in Cushing's Syndrome
Pulmonary oedema
- Left heart failure and mitral stenosis.
- Rapid flv infusion specially in a patient of heart failure.
Polycystic kidney disease
Characterized by the formation of cysts and partial replacement of renal parenchyma.
Genetic transmission: autosomal dominant.
Clinical manifestations:
hypertension, hematuria, palpable renal masses, and progression to renal failure. Commonly associated with berry
aneurysms.
Verruca vulgaris
1. Commonly known as warts.
2. Caused by the human papillomavirus (HPV).
3. Warts can be seen on skin or as an oral lesion (vermilion border, oral mucosa, or tongue).
4. Transmitted by contact or autoinoculation.
5. A benign lesion.
SHOCK
Definition. It is a clinical state of acute inadequacy of perfusion to tissues due to fall in effective circulating blood volume.
This inadequacy can be caused by :
- Increased vascular capacity
- Decreased blood volume
- Altered distribution of available blood
- Defective pumping system
Causes:
(1) Hypovolemic
- Massive hamorrhage (external or internal).
- Loss of plasma as in bums.
- Dehydration due to severe vomiting, diarrhea diabetic coma.
- Generalized capillary permeability as in anaphylaxis.
(2) Cardiogenic
- Myocardial infarction.
- Pulmonary embolism.
- Cardiac tamponade
(3) Peripheral pooling:
- Endotoxic shock.
- Disseminated intravascular coagulation (DIC).
(4) Neurogenic:
- Syncope.
- Contributory factor in trauma, bums etc.
Metabolic changes in shock
- Hyperglycaemia due to glycogenolysis.
- Increased blood lactate and pyruvate due to anaerobic glycolysis. This results in metabolic acidosis.
- Protein catabolism and increased blood urea.
- Interference with enzyme systems.
Organs involved in shock
(1) Kidneys:
- Renal tubular necrosis.
- Cortical necrosis.
(2) Lungs:
- Oedema, congestion and haemorrhage.
- Microthrombi.
(3) G.I.T. :
- Mucosal oedema.
- Ulceration and haemorrhage
(4) Degeneration and focal necrosis in:
- Heart.
- Liver.
- Adrenals
(5) Anoxic encephalopathy
Jaundice, or icterus
a. Characterized by yellowness of tissues, including skin, eyes, and mucous membranes.
b. Caused by excess conjugated and/or unconjugated serum bilirubin. (increased levels of bilirubin in the blood)
lcterus is visible when the serum bilirubin exceeds 2 mg/dl. In unconjugated hyperbilirubinemia, bilirubin is not excreted into the urine because of tight protein binding in serum. In conjugated hyperbilirubinemia, small amounts of bilirubin are excreted in the urine because
it is less tightly protein bound.
NOTE: Concentration of bilirubin in blood plasma does not normally exceed 1 mg/dL (>17µmol/L). A concentration higher than 1.8 mg/dL (>30µmol/L) leads to jaundice.
The conjunctiva of the eye are one of the first tissues to change color as bilirubin levels rise in jaundice. This is sometimes referred to as scleral icterus.
c. Types and causes include:
(1) Hepatocellular jaundice—caused by liver diseases such as cirrhosis and hepatitis.
(2) Hemolytic jaundice—caused by hemolytic anemias.
(3) Obstructive jaundice—caused by blockage of the common bile duct either by gallstones (cholelithiasis) or carcinomas involving the head of
the pancreas.
Differential diagnosis
Jaundice is classified into three categories, depending on which part of the physiological mechanism the pathology affects. The three categories are:
Pre-hepatic → The pathology is occurring prior to the liver.
Hepatic → The pathology is located within the liver.
Post-Hepatic → The pathology is located after the conjugation of bilirubin in the liver.
Pre-hepatic
Pre-hepatic jaundice is caused by anything which causes an increased rate of hemolysis (breakdown of red blood cells).
Certain genetic diseases, such as sickle cell anemia, spherocytosis, thalassemia and glucose 6-phosphate dehydrogenase deficiency can lead to increased red cell lysis and therefore hemolytic jaundice.
Commonly, diseases of the kidney, such as hemolytic uremic syndrome, can also lead to coloration. Defects in bilirubin metabolism also
present as jaundice, as in Gilbert's syndrome (a genetic disorder of bilirubin metabolism which can result in mild jaundice, which is found in about 5% of the population) and Crigler-Najjar syndrome.
In jaundice secondary to hemolysis, the increased production of bilirubin, leads to the increased production of urine-urobilinogen. Bilirubin is not usually found in the urine because unconjugated bilirubin is not water-soluble, so, the combination of increased urine-urobilinogen with no bilirubin (since, unconjugated) in urine is suggestive of hemolytic jaundice.
Laboratory findings include:
• Urine: no bilirubin present, urobilinogen > 2 units (i.e., hemolytic anemia causes increased heme metabolism; exception: infants where gut flora has not developed).
• Serum: increased unconjugated bilirubin.
• Kernicterus is associated with increased unconjugated bilirubin.
Hepatocellular
Hepatocellular (hepatic) jaundice can be caused by acute or chronic hepatitis, hepatotoxicity, cirrhosis, drug induced hepatitis and alcoholic liver disease. Cell necrosis reduces the liver's ability to metabolize and excrete bilirubin leading to a buildup of unconjugated bilirubin in the blood.
Laboratory findings depend on the cause of jaundice.
• Urine: Conjugated bilirubin present, urobilirubin > 2 units but variable (except in children). Kernicterus is a condition not associated with increased conjugated bilirubin.
• Plasma protein show characteristic changes.
• Plasma albumin level is low but plasma globulins are raised due to an increased formation of antibodies.
Bilirubin transport across the hepatocyte may be impaired at any point between the uptake of unconjugated bilirubin into the cell and transport of conjugated bilirubin into biliary canaliculi.
Post-hepatic
Post-hepatic jaundice, also called obstructive jaundice, is caused by an interruption to the drainage of bile in the biliary system. The most common causes are gallstones in the common bile duct, and pancreatic cancer in the head of the pancreas. Also, a group of parasites known as "liver flukes" can live in the common bile duct, causing obstructive jaundice. Other causes include strictures of the common bile duct, biliary atresia, cholangiocarcinoma, pancreatitis and pancreatic pseudocysts. A rare cause of obstructive jaundice is Mirizzi's syndrome.
Pathophysiology
When RBCs are damaged, their membranes become fragile and prone to rupture. As each RBC traverses through the reticuloendothelial system, its cell membrane ruptures when its membrane is fragile enough to allow this.
Hemoglobin, are released into the blood. The hemoglobin is phagocytosed by macrophages, and split into its heme and globin portions. The globin portion, a protein, is degraded into amino acids and plays no role in jaundice.
Two reactions then take place with the heme molecule.
The first oxidation reaction is catalyzed by the microsomal enzyme heme oxygenase and results in biliverdin (green color pigment), iron
and carbon monoxide.
The next step is the reduction of biliverdin to a yellow color tetrapyrol pigment called bilirubin by cytosolic enzyme biliverdin reductase.
This bilirubin is "unconjugated," "free" or "indirect" bilirubin. Approximately 4 mg of bilirubin per kg of blood is produced each day.[11] The majority of this bilirubin comes from the breakdown of heme from expired red blood cells in the process just described.
However approximately 20 percent comes from other heme sources, including ineffective erythropoiesis, and the breakdown of other heme-containing proteins, such as muscle myoglobin and cytochromes.
Hepatic events
The unconjugated bilirubin then travels to the liver through the bloodstream. Because bilirubin is not soluble, however, it is transported through the blood bound to serum albumin.
In Liver, it is conjugated with glucuronic acid (to form bilirubin diglucuronide, or just "conjugated bilirubin") to become more water soluble.
The reaction is catalyzed by the enzyme UDP-glucuronyl transferase.
This conjugated bilirubin is excreted from the liver into the biliary and cystic ducts as part of bile. Intestinal bacteria convert the bilirubin into urobilinogen.
Urobilinogen can take two pathways. It can either be further converted into stercobilinogen, which is then oxidized to stercobilin and passed out in the feces, or it can be reabsorbed by the intestinal cells, transported in the blood to the kidneys, and passed out in the urine as the oxidised product urobilin.
Stercobilin and urobilin are the products responsible for the coloration of feces and urine, respectively.
Post viral (post hepatitic) cirrhosis (15-20%)
Cause:- Viral hepatitis (mostly HBV or HCV)
Acute hepatitis → chronic hepatitis → cirrhosis.
Pathology
Liver is shrunken. Fatty change is absent (except with HCV). Cirrhosis is mixed.
M/E :-
Hepatocytes-show degeneration, necrosis as other types of cirrhosis.
Fibrous septa -They are thick and immature (more cellular and vascular).
- Irregular margins (piece meal necrosis).
- Heavy lymphocytic infiltrate.
Prognosis:- - More rapid course than alcoholic cirrhosis.Hepatocellular carcinoma is more liable to occur