Talk to us?

General Pathology - NEETMDS- courses
NEET MDS Lessons
General Pathology

Eosinophilia:
Causes

-Allergic disorders.
-Parasitic infection.
-Skin diseases.
-Pulmonary eosinophilia.
-Myeloproliferative lesions and Hodgkin's disease.

HAEMORRHAGIC DISORDERS

Normal homeostasis depends on

 -Capillary integrity and tissue support.

- Platelets; number and function

(a) For integrity of capillary endothelium and platelet plug by adhesion and aggregation

(b) Vasoactive substances for vasoconstriction

(c) Platelet factor for coagulation.

(d) clot retraction.

- Fibrinolytic system(mainly Plasmin) : which keeps the coagulatian system in check.

Coagulation disorders

These may be factors :

Deficiency .of factors

  • Genetic.
  • Vitamin K deficiency.
  • Liver disease.
  • Secondary to disseminated intravascular coagulation.or defibrinatian

Overactive fibrinolytic system.

Inhibitors of  the factars (immune, acquired).

Anticoagulant therapy as in myocardial infarctian.

Haemophilia. Genetic disease transmitted as X linked recessive trait. Comman in Europe. Defect in fcatorVII  Haemophilia A .or in fact .or IX-Haemaphilia B (rarer).

Features:

  • May manifest in infancy or later.
  • Severity depends  on degree of deficiency.
  • Persistant woundbleeding.
  • Easy Bruising with Haemotoma formation

Nose bleed , arthrosis, abdominal pain with fever and leucocytosis

Prognosis is good with prevention of trauma and-transfusion of Fresh blood or fTesh plasma except for danger of developing immune inhibitors.

Von Willebrand's disease. Capillary fragility and decreased factor VIII (due to deficient stimulatory factor). It is transmitted in an autosomal dominant manner both. Sexes affected equally

Vitamin K  Deficiency. Vitamin K is needed for synthesis of factor II,VII,IX and X.

Deficiency maybe due to:

Obstructive jaundice.

Steatorrhoea.

Gut sterilisation by antibiotics.

Liver disease results in :

Deficient synthesis of factor I II, V, Vll, IX and X  Incseased fibrinolysis (as liver is the site of detoxification of activators ).

Defibrination syndrome. occurs when factors are depleted due to disseminated .intravascular coagulation (DIC). It is initiated by endothelial damage or tissue factor entering the circulation.

Causes

Obstetric accidents, especially amniotic fluid embolism. Septicaemia. .

Hypersensitivity reactions.

Disseminated malignancy.

Snake bite.

Vascular defects :

(Non thrombocytopenic purpura).

Acquired :

Simple purpura a seen in women. It is probably endocrinal

Senile parpura in old people due to reduced tissue support to vessels

Allergic or toxic damage to endothelium due to  Infections like Typhoid Septicemia

Col!agen diseases.

Scurvy

Uraemia damage to  endothelium (platelet defects).

Drugs like aspirin. tranquillisers, Streptomvcin pencillin etc.

Henoc schonlien purpura Widespeard vasculitis due to hypersensitivity to bacteria or foodstuff

It manifests as :

Pulrpurric rashes.

Arthralgia.

Abdominal pain.

Nephritis and haematuria.

Hereditary :

(a) Haemhoragic telangieclasia. Spider like tortous vessels which bleed easily. There are disseminated lesions in skin, mucosa and viscera.

(b) Hereditary capillary fragilily similar to the vascular component of von Willbrand’s disease

.(c) Ehler Danlos Syndrome which is a connective tissue defect with skin, vascular and joint manifestations.

Platelet defects

These may be :

(I) Qualitative thromboasthenia and thrombocytopathy.

(2) Thrombocytopenia :Reduction in number.

(a) Primary or idiopathic thrombocytopenic purpura.

(b) Secondary to :

(i) Drugs especially sedormid

(ii) Leukaemias

(iii) Aplastic-anaemia.

Idiopathic thrombocytopenic purpura (ITP). Commoner in young females.

Manifests as :

Acute self limiting type.

Chronic recurring type.

Features:

(i) Spontaneous bleeding and easy bruisability

(ii)Skin (petechiae), mucus membrane (epistaxis) lesions and sometimes visceral lesions involving any organ.

Thrombocytopenia with abnormal forms of platelets.

Marrow shows increased megakaryocytes with immature forms,

vacuolation, and lack of platelet budding.

Pathogenesis:

hypersensitivity to infective agent in acute type.

Plasma thrombocytopenic factor ( Antibody in nature) in chronic type

Nephrotic Syndrome
The patient will present with a triad of symptoms:
- Proteinuria, i.e. >3g/24hr-3.5g/24 hr
- Hypoalbuminaemia, i.e. <30g/L
- Oedema 
 >80% of cases are due to glomerulonephritis. In this syndrome, there is damage to podocytes 
 
 Clinical signs
- Pitting oedema, particularly in the limbs and around the eyes; may also cause genital oedema and ascites.
- Possible hypertension 

Causes
- Primary causes – these are diagnoses of exclusion that are only made if secondary causes cannot be found
    o Minimal change disease (MCD)
    o Focal segmental glomerulosclerosis
    o Membranous nephropathy
- Secondary causes – note that these fall into the same three categories as above:
    o Minimal change disease – Hep B, SLE, diabetes M, sarcoidosis, syphilis, malignancy
    o Focal segmental glomerulosclerosis –HIV, obesity, diabetes M, hypertensive nephrosclerosis
    o Minimal change disease –drugs, malignancy, particularly Hodgkin’s lymphoma  
    
 - Differential diagnoses include cardiac failure, i.e. increased JVP, pulmonary oedema and mild proteinuria, and liver disease, i.e. reduced serum albumin.
- The condition causes an increased susceptibility to infection – partly due to loss of immunoglobulin in the urine. Patients tend to be prone to streptococcus infection, as well as bacterial peritonitis and cellulitis.
- Nephrotic syndrome also increases the risk of thromboembolism and hyperlipidaemia.
- The former is due to an increase in the synthesis of clotting factors and to platelet abnormalities, and the latter is a result of increased synthesis of these by the liver to counteract reduced oncotic pressure.  

Investigations

- These are the same as those carried out in GN.
- Also, check for cholesterol as part of confirming the presence of hyperlipidemia.
- Renal biopsy – order this for all adults. In children, because the main cause is minimal change GN, steroids are the first-line treatment. Therefore, in children, biopsy is necessary only if pharmaceutical intervention fails to improve the situation.
- The hypercoagulant state seen in the nephrotic syndrome can be a risk factor for renal vein thrombosis. This can present as loin pain, haematuria, palpable kidney and sudden deterioration in kidney function. This should be investigated with Doppler USS, MRI or even renal angiography.
- Once diagnosed, give warfarin for 3 to 6 months.

Management

- Generally, this involves treatment of the underlying condition which is usually GN. Therefore, fluid management and salt intake restriction are priorities. The patient is usually given furosemide along with an ACE inhibitor and/or an angiotensin II receptor antagonist. Prophylactic heparin is given if the patient is immobile. Hyperlipidaemia can be treated with a statin. 

Nephritic Syndrome 

Acute and chronic
forms of the syndrome exist. The main difference between this and nephrotic syndrome is that in nephritic syndrome haematuria is present. There is also proteinuria, hypertension, uraemia, and possibly oliguria. The two standout features are hypertension and RBC casts. The urine will often appear ‘smoky’ in colour due to the presence of RBC casts. Very rarely, it may appear red 

Causes

1. Post-streptococcal
2. Primary:
- Membranous glomerulonephritis
- Rapidly progressive glomerulonephritis
- IgA nephropathy (Berger’s disease)
3. Secondary
- HSP
- Vasculitis

Clinical Features

- Abrupt onset of :
    o Glomerular haematuria (RBC casts or dysmorphic RBC)
    o Non-nephrotic range proteinuria (< 2 g in 24 hrs)
    o Oedema (periorbital, sacral )
    o Hypertension
    o Transient renal impairment (oliguria, uraemia)
- Urinary casts – these are cylindrical structures produced by the kidney and present in the urine in certain renal diseases. They form in the DCT and collecting duct, dislodging and passing in the urine where they are detected by microscopy. RBC casts are usually associated with nephritic syndrome. The presence of RBCs within a cast is always pathologic and strongly indicative of glomerular damage.
- The proteinuria present is often smaller than in nephrotic syndrome, thus a coexistent condition of nephrotic syndrome is not usually present.
- Encepelopathy may be present, particularly in children, due to electrolyte imbalances and hypertension. This type of presentation is indicative of glomerular damage, but requires renal biopsy to determine the exact problem. In this respect it is similar to nephrotic syndrome.
Overlapping of the two syndromes is possible as nephrotic syndrome may precede nephritic syndrome, although not vice-versa.

Mechanisms of the syndrome vary according to cause; both primary and secondary causes exist. Post-infectious GN is the classic illustration of nephritic syndrome, but the condition may be caused by other glomerulopathies and by systemic diseases such as connective tissue disorders 

Two clinical terms to remember:
- Nephritic syndrome; which comprises edema, proteinuria, hypoalbuminemia, hematuria (smoky urine), oligurua and hypertension.
- Nephrotic syndrome; which comprises of albuminuria, hypoalbuminemia, edema, hyperlipidemia, lipiduria. 

Neuroblastoma and Related Neoplasms
Neuroblastoma is the second most common solid malignancy of childhood after brain tumors, accounting for up to10% of all pediatric neoplasms. They are most common during the first 5 years of life. Neuroblastomas may occur anywhere along the sympathetic nervous system and occasionally within the brain. Most neuroblastomas are sporadic. Spontaneous regression and spontaneous- or therapy-induced maturation are their unique features.  

Gross features
- The adrenal medulla is the commonest site of neuroblastomas. The remainder occur along the sympathetic chain, mostly in the paravertebral region of the abdomen and posterior mediastinum. 
- They range in size from minute nodules to large masses weighing more than 1 kg. 
- Some tumors are delineated by a fibrous pseudo-capsule, but others invade surrounding structures, including the kidneys, renal vein, vena cava, and the aorta. 
- Sectioning shows soft, gray-tan, brain-like tissue. Areas of necrosis, cystic softening, and hemorrhage may be present in large tumors. 

Microscopic features
- Neuroblastomas are composed of small, primitive-appearing neuroblasts with dark nuclei & scant cytoplasm, g rowing in solid sheets.  
- The background consists of light pinkish fibrillary material corresponding to neuritic processes of the primitive cells. 
- Typically, rosettes can be found in which the tumor cells are concentrically arranged about a central space filled with the fibrillary neurites.
- Supporting features include include immunochemical detection of neuron-specific enolase and ultrastructural demonstration of small, membrane-bound, cytoplasmic catecholamine-containing secretory granules.
- Some neoplasms show signs of maturation, either spontaneous or therapy-induced. Larger ganglion-like cells having more abundant cytoplasm with large vesicular nuclei and prominent nucleoli may be found in tumors admixed with primitive neuroblasts (ganglioneuroblastoma). Further maturation leads to tumors containing many mature ganglion-like cells in the absence of residual neuroblasts (ganglioneuroma). 

Many factors influence prognosis, but the most important are the stage of the tumor and the age of the patient. Children below 1 year of age have a much more favorable outlook than do older children at a comparable stage of disease. 

Miscroscopic features are also an independent prognostic factor; evidence of gangliocytic differentiation is indicative of a "favorable" histology. Amplification of the MYCN oncogene in neuroblastomas is a molecular event that has profound impact on prognosis. The greater the number of copies, the worse is the prognosis. MYCN amplification is currently the most important genetic abnormality used in risk stratification of neuroblastic tumors. 

About 90% of neuroblastomas produce catecholamines (as pheochromocytomas), which are an important diagnostic feature (i.e., elevated blood levels of catecholamines and elevated urine levels of catecholamine metabolites such as vanillylmandelic acid [VMA] and homovanillic acid [HVA]). 

Vitiligo is an autoimmune destruction of melanocytes resulting in areas of depigmentation.
 - commonly associated with other autoimmune diseases such as pernicious anemia, Addison's disease, and thyroid disease.
 - common in the Black population

Leukaemias
Uncontrolled proliferation of leukocyte precursors (may be with associated red cell and platelet series proliferation).

Factors which may playa causal role are.
- Viral
- Radiation.
- Genetic.

Classification

1. Acule leukaemia:

a. Lymphocytic (lymphoblastic).
b. Myelocytic and promyelocytic (myeloblastic).
c. Monocytic.
d. Myelomonocytic.
e. Undifferentiated (Stem cell).

2. Chronic leukaemia:

a. Lymphocytic
b. Myelocytic

3. Miscellaneous:
a. Erythroleukaemia (De Guglielmo's disease).
b. Eosinophilic leukaemia.
c. Megakaryocytic leukaemia.

Nephrolithiasis, urolithiasis

Formation of calculi (calcium stones) in the kidney (nephrolithiasis) or urinary tract (urolithiasis).
Commonly associated with hyperparathyroidism.
Signs and symptoms 

urinary tract obstruction, severe pain, and pyelonephritis.

Note: an enlarged prostate can also cause urinary tract obstruction in males.

Explore by Exams