NEET MDS Lessons
General Pathology
Wilson’s disease
Caused by a decrease in ceruloplasmin, a serum protein that binds copper, resulting in metastatic copper deposits.
Common organs affected include:
(1) Liver, leading to cirrhosis.
(2) Basal ganglia.
(3) Cornea, where Kayser-Fleischer rings (greenish rings around the cornea) are observed.
Hypoparathyroidism
Hypoparathyroidism is a condition of reduced or absent PTH secretion, resulting in hypocalcaemia and hyperphosphataemia. It is far less common than hyperparathyroidism.
The causes of hypoparathyroidism are:
- Removal or damage of the parathyroid glands during thyroidectomy—most common cause of hypoparathyroidism resulting from inadvertent damage or removal.
- Autoimmune parathyroid disease—usually occurs in patients who have another autoimmune endocrine disease, e.g. Addison’s disease (autoimmune endocrine syndrome type 1).
- Congenital deficiency (DiGeorge syndrome)— rare, congenital disorder caused by arrested development of the third and fourth branchial arches, resulting in an almost complete absence of the thymus and parathyroid gland.
The effects of hypoparathyroidism are:
- ↓ release of Ca2+ from bones.
- ↓ Ca2+ reabsorption but ↑ PO 43− re absorption by the kidneys
- ↓ 1-hydroxylation of 25-hydroxyvitamin D by kidney.
Most symptoms of hypoparathyroidism are those of hypocalcaemia:
- Tetany—muscular spasm provoked by lowered plasma Ca 2+
- Convulsions.
- Paraesthesiae.
- Psychiatric disturbances, e.g. depression, confusional state and even psychosis.
- Rarely—cataracts, parkinsonian-like movement disorders, alopecia, brittle nails.
Management is by treatment with large doses of oral vitamin D; the acute phase requires intravenous calcium and calcitriol (1,25-dihydroxycholecalciferol, i.e. activated vitamin D).
Verruca vulgaris
1. Commonly known as warts.
2. Caused by the human papillomavirus (HPV).
3. Warts can be seen on skin or as an oral lesion (vermilion border, oral mucosa, or tongue).
4. Transmitted by contact or autoinoculation.
5. A benign lesion.
AMYLOIDOSIS
Definition. Extra cellular deposition of an eosinophilic hyaline homogenous material in Various organs, occurring in a variety of clinical states.
Staining reactions
Iodine :- Brown, turning blue on addition of H2SO4 (gross and microscopic Stain).
P.A.S. – Positive (Magenta pink).
Congo Red -Orange red which on polarisation gives green birefringence.
Von Geison's –Khaki colour.
Thioflavin T -Yellow fluorescence.
Amyloid is called typical if it given the above staining reactions Other wise it is termed atypical or para-amyloid.
Classification
1. Systemic amyloidosis associated with underlying disease (secondary),
(A) Chronic infections like
- Tuberculosis.
- Bronchiectasis.
- Lung abscess.
- Osteomyelitis.
- Syphilis.
(B) Chronic inflammations of varied etiology:
- Rheumatoid arthritis.
- Ulcerative colitis.
- Regional enteritis.
- Lupus erythematosus.
(C) Neoplastic proliferations:
- Of immune system – Multiple myeloma, Hodgkin’s disease.
- Cancers like Renal cell carcinoma etc.
II Systemic primary amyloidosis with no underlying cause.
III Heredofamilial types.
- Amyloidosis with mediterranean fever.
- Amyloid polyneuropathy.
- Amyloid nephrophathy
- Familial cardiac amyloidosis
- Familial cutaneous amyloid.
- Lattice corneal dystrophy
IV. Localised amyloidosis:
- Senile - in heart, brain, seminal vesicles.
- Amyloidoma of tongue, bronchial tree, skin.
- In islets of Langerhans in Diabetes mellitus.
- In medullary thyroid carcinoma.
Deposition sites
In relation to reticulin and collagen fibres and to basement, membranes especially
subendothelial.
Organs involved commonly are :
Secondary amyloidosis
- Liver.
- Spleen.
- Kidney
- Lymph nodes.
- Adrenals.
Primary amyloidosis
- Heart
- Tongue and gingiva.
- Gastro intestinal tract.
- Lung.
- Wall of small vessels.
Nature and pathogenesis of amyloid
It is primarily made up of protein arranged in two patterns
- There are filaments twisted together to from the fibrils. These chemically resemble light chains of immunoglobulins
- Rods composed of stacked rings. These are made up of alpha globulin components of plasma proteins (P-components)
- In addition to these, extracts of crude amyloid contain mucopolysacharides complement and gamma globulins.
- Origin of amyloid :- current concept is that it is a direct product of cells of the immune sustem with some abnormality in their immune response
The abnormality may be due to :
- A genetic enzyme defect.
- Prolonged antigenic challenge.
- Neoplastic transformation
- Supression of normal. Response as in induced tolerance.
Leukaemias
Uncontrolled proliferation of leukocyte precursors (may be with associated red cell and platelet series proliferation).
Factors which may playa causal role are.
- Viral
- Radiation.
- Genetic.
Classification
1. Acule leukaemia:
a. Lymphocytic (lymphoblastic).
b. Myelocytic and promyelocytic (myeloblastic).
c. Monocytic.
d. Myelomonocytic.
e. Undifferentiated (Stem cell).
2. Chronic leukaemia:
a. Lymphocytic
b. Myelocytic
3. Miscellaneous:
a. Erythroleukaemia (De Guglielmo's disease).
b. Eosinophilic leukaemia.
c. Megakaryocytic leukaemia.
PERTUSSIS (Whooping Cough)
An acute, highly communicable bacterial disease caused by Bordetella pertussis and characterized by a paroxysmal or spasmodic cough that usually ends in a prolonged, high-pitched, crowing inspiration (the whoop).
Transmission is by aspiration of B. pertussis
Symptoms and Signs
The incubation period averages 7 to 14 days (maximum, 3 wk). B. pertussis invades the mucosa of the nasopharynx, trachea, bronchi, and bronchioles, increasing the secretion of mucus, which is initially thin and later viscid and tenacious. The uncomplicated disease lasts about 6 to 10 wk and consists of three stages: catarrhal, paroxysmal, and convalescent.
IMMUNITY AND RESISTANCE TO INFECTION
Body's resistance to infection depends upon:
I. Defence mechanisms at surfaces and portals of entry.
II. Nonspecific or innate immunity
Ill. Specific immune response.
I. Surface Defence Mechanisms
1. Skin:
(i) Mechanical barrier of keratin and desquamation.
(ii) Resident commensal organisms
(iii)Acidity of sweat.
(iv) Unsaturated fatty acids of sebum
2. Oropharyngeal
(i)Resident flora
(ii) Saliva, rich in lysozyme, mucin and Immunoglobulins (lgA).
3. Gastrointestinal tract.-
(i) Gastric HCI
(ii) Commensal organisms in Intestine
(iii) Bile salts
(iv) IgA.
(v) Diarrhoeal expulsion of irritants.
4. Respiratory tract:
(i) Trapping in turbinates
(ii) Mucus trapping
(iii) Expulsion by coughing and sneezing.
(iv) Ciliary propulsion.
(V) Lysozymes and antibodies in secretion.
(vi) Phagocytosis by alveolar macrophages.
5. Urinary tract:
(i) Flushing action.
(ii) Acidity
(iii) Phagocytosis by urothelial cells.
6. Vagina.-
(i) Desquamation.
(ii) Acid barrier.
(iii) Doderlein's bacilli (Lactobacilli)
7. Conjunctiva:
Lysozymes and IgA in tears
II. Nonspecific or Innate Immunity
1. Genetic factors
- Species: Guinea pig is very susceptible to tuberculosis.
- Race: Negroes are more susceptible to tuberculosis than whites
- Sickle cells (HbS-a genetic determined Haemoglobinopathy resistant to Malarial parasite.
2. Age Extremes of age are more susceptible.
3. Hormonal status. Low resistance in:
- Diabetes Mellitus.
- Increased corticosteroid levels.
- Hypothyroidism
4. Phagocytosis. Infections can Occur in :
- Qualitative or quantitative defects in neutrophils and monocytes.
- Diseases of mononuclear phagocytic system (Reticuloendothelial cells-RES).
- Overload blockade of RES.
5. Humoral factors
- Lysozyme.
- Opsonins.
- Complement
- Interferon (antiviral agent secreted by cells infected by virus)
III. The Specific Immune Response
Definition
The immune response comprises all the phenomenon resulting from specific interaction
of cells of the immune-system with antigen. As a consequence of this interaction cells
, appear that mediate cellular immune response as well cells that synthesis and secrete
immunoglobulins
Hence the immune response has 2 components.
1. Cell mediated immunity (CMI).
2:. Humoral immunity (antibodies)
(I) Macrophages. Constituent of the M. P. S. These engulf the antigenic material.
(i) Most of the engulfed antigen is destroyed to' prevent a high dose paralysis of the Immune competent cells.
(ii) Some of it persists in the macrophage, retaining immunogenecity for continued stimulus to the immune system.
(iii)The antigenic information is passed on to effectors cells. There are two proposed mechanisms for this:
(a) As messenger RNA with code for the specific antibody.
(b) As antigen-RNA complexes.
(2) Lymphocytes. There are 2 main classes recognized by surface characteristics.
(A) T-Lymyhocytes (thymus dependant) :- These are responsible for cellular immunity . On exposure to antigen
- They transform to immunoblasts which divide to form the effectors cells.
- They secrete lymphokines These are
- Monocyte migration inhibition factor
- Macrophage activation factor
- Chemotactic factor
- Mitogenic factor
- Transfer factor
- Lymphotoxin which kills target cell
- Interferon.
- Inflammatory factor which increases permeability. .
- Some remain as 1onglived memory cell for a quicker recognition on re-exposure
- They also modify immune response by other lymphocytes in the form of “T – helper cells “ and “T-suppressor” cells
- They are responsible for graft rejection
(B) B-Lymphocytes (Bursa dependent). In birds the Bursa of Fabricious controls these cells. In man, its role is taken up by," gut associated lymphoid tissue)
(i) They are responsible for antibody synthesis. On stimulation they undergo blastic transformation and then differentiation to plasma cells, the site of immunoglobulin synthesis.
(ii) They also form memory cells. But these are probably short lived.
(C) In addition to T & B lymphocytes, there are some lymphocytes without the surface markers of either of them. These are 'null' cells-the-natural Killer (N,K.) cells and cells responsible for antibody dependent cellular-cytotoxicity.
(3) Plasma cells. These are the effectors cells of humoral immunity. They produce the immunoglobins, which are the effector molecules.