NEET MDS Lessons
General Pathology
Asthma
Asthma is
(1) An obstructive lung disease characterized by narrowing of the airways.
Inflammation of the airways is a major component of asthma.
(2) Common symptoms are dyspnea, wheezing on expiration, and coughing.
(3) Two types:
(a) Extrinsic (allergic, atopic) asthma
(i) An atopic allergy caused by a type I immediate hypersensitivity immune reaction to an allergen.
(ii) Seen in children, adults.
(b) Intrinsic (nonallergic) asthma
(i) Not caused by an allergic reaction.
(ii) Mostly seen in adults.
The disorder is a chronic inflammatory condition in which the airways develop increased responsiveness to various stimuli, characterized by bronchial hyper-responsiveness, inflammation, increased mucus production, and intermittent airway obstruction.
Signs and symptoms
- The clinical hallmarks of an attack are shortness of breath (dyspnea) and wheezing
- A cough—sometimes producing clear sputum—may also be present
- The onset is often sudden; there is a "sense of constriction" in the chest, breathing becomes difficult, and wheezing occurs
- Signs of an asthmatic episode are wheezing, rapid breathing (tachypnea), prolonged expiration, a rapid heart rate (tachycardia), rhonchous lung sounds (audible through a stethoscope), and over-inflation of the chest.
- During very severe attacks asthma sufferer can turn blue due to lack of oxygen , can experience chest pain or even loss of consciousness, may lead to respiratory arrest and death
Pathophysiology
Bronchoconstriction : asthma is the result of an abnormal immune response in the bronchial airways. The airways of asthmatics are "hypersensitive" to certain triggers, also known as stimuli, these stimuli include allergens, medications , air pollution, early child hood infection, exercise, emotional stress
Bronchial inflammation asthma resulting from an immune response to inhaled allergens—are the best understood of the causal factors. In both asthmatics and non-asthmatics, inhaled allergens that find their way to the inner airways are ingested by a type of cell known as antigen presenting cells These activate an humoral immune response. The humoral immune system produces antibodies against the inhaled allergen. Later, when an asthmatic inhales the same allergen, these antibodies "recognize" it and activate a humoral response. Inflammation results: chemicals are produced that cause the airways to constrict and release more mucus, and the cell-mediated arm of the immune system is activated. The inflammatory response is responsible for the clinical manifestations of an asthma attack
Symptomatic Treatment
Episodes of wheeze and shortness of breath generally respond to inhaled bronchodilators which work by relaxing the smooth muscle in the walls of the bronchi., More severe episodes may need short courses of inhaled, oral, or intravenous steroids which suppress inflammation and reduce the swelling of the lining of the airway.
Bronchodilators (usually inhaled)
Short-acting selective beta2-adrenoceptor agonists(salbutamol, terbutaline)
less selective adrenergic agonists, such as inhaled epinephrine and ephedrine tablets
Antimuscarinics
Systemic steroids
Oxygen to alleviate the hypoxia that is the result of extreme asthma attacks.
If chronic acid indigestion ( GERD) is part of the attack, it is necessary to treat it as well or it will restart the inflammatory process
Preventive Treatment
most effective preventive medication are
Inhaled corticosteroids
Long-acting beta2-adrenoceptor agonists
Leukotriene modifiers
Mast cell stabilizers
Methylxanthines (theophylline and aminophylline),
Antihistamines, often used to treat allergic symptoms
THROMBOPHLEBITIS AND PHLEBOTHROMBOSIS
- The deep leg veins account for more than 90% of cases (DVT)
- the most important clinical predispositions are: congestive heart failure, neoplasia, pregnancy, obesity, the postoperative state, and prolonged bed rest or immobilization
- local manifestations: distal edema, cyanosis, superficial vein dilation, heat, tenderness, redness, swelling, and pain
- migratory thrombophlebitis (Trousseau sign): hypercoagulability occurs as a paraneoplastic syndrome related to tumor elaboration of procoagulant factors
Sickle Cell Disease
Sickle cell anemia is a autosomal recessive genetic disorder. It affects the BETA GLOBIN gene on the CHROMOSOME 16. In sickle cell anemia, the hemoglobin abnormality consists of a point mutation in the beta chain gene for hemoglobin; the resulting abnormal gene product is denoted HbS. If you are heterozygous for the HbS gene you will have what is called sickle trait, which is asymptomatic .
If you are homozygous for the HbS gene you will get sickle cell disease, which is symptomatic in most patients.
The problem with HbS is that as it releases oxygen, it polymerizes and aggregates with other HbS molecules, making the red cell stiff and distorted. These distorted, sickle-shaped red cells are fragile so the patient can end up with a hemolytic anemia.
This can occur as pure disease (homozygous) or trait (heterozygous) or with other haemoglobinopathies. It is common. in Negroes. It is due to Hb-s which is much less soluble than Hb-A hence deoxygenation insoluble form sickling of RBC.
This causes:
• Removal by RE system.
• Blockage of microvessels causing ischaemia.
NECROSIS
Definition: Necrosis is defined as the morphologic changes caused by the progressive degradative
action of enzymes on the lethally injured cell.
These changes are due to
I. Autolysis and
2. Heterolysis.
The cellular changes of necrosis i.e. death of circumscribed group of cells in continuity with living tissues are similar to changes in tissues following somatic death, except that in the former, there is leucocytic infiltration in reaction to the dead cells and the lytic
enzymes partly come from the inflammatory cell also. (Heterolysis). Cell death occurs in the normal situation of cell turnover also and this is called apoptosis-single cellular dropout.
Nuclear changes in necrosis
As cytoplasmic changes are a feature of degeneration ,similarly nuclear changes are the hallmark of necrosis. These changes are:
(i) Pyknosis –condensation of chromatin
(ii) Karyorrhexis - fragmentation
(iii) Karyolysis - dissolution
Types of necrosis
(1) Coagulative necrosis: Seen in infarcts. The architectural outlines are maintained though structural details are lost. E.g, myocardial infarct.
(2) Caseous necrosis: A variant of coagulative necrosis seen in tuberculosis. The architecture is destroyed, resulting in an eosinophilic amorphous debris.
(3) Colliquative (liquifactive). Necrosis seen in Cerebral infarcts and suppurative necrosis.
Gangrenous necrosis: It is the necrosis with superadded putrefaction
May be:
a. dry - coagulative product.
b. Wet - when there is bacterial liquifaction.
Fat necrosis
May be:
a. Traumatic (as in breast and subcutaneous tissue).
b Enzymatic (as in pancreatitis). It shows inflammation of fat with formation of lipophages and giant cells.
This is often followed by deposition of calcium as calcium soaps.
Hyaline necrosis: Seen in skeletal muscles in typhoid and in liver ceIs in some forms of hepatitis.
Fibrinoid necrosis: In hypertension and in immune based diseases.
Cells Of The Exudate
Granulocytes (Neutrophils, eosinophils, and basophils)
Monocytes (and tissue macrophages)
Lymphocytes
Neutrophils (polymorphs).
Characteristics
(1) Cell of acute inflammation.
(2) Actively motile.
(3) Phagocytic.
(4) Respond to chemotactic agents like.
Complement products.
Bacterial products.
Tissue breakdown
Lysosomal enzymes of other polymorphs
Functions
(1) Phagocytosis and intracellular digestion of bacteria.
(2) Exocytosis of lysosomal enzymes to digest dead tissue as the first step in the process of repair.
Eosinophils
Characteristics
(I) Cell of allergjc and immunologic inflammation.
(2) Motile and phagocytic but less so than a neutrophil.
(3) Response to chemotaxis similar to neutrophil. In addition, it is also responsive to antigens and antigen-antibody complexes.
(4) Steroids cause depletion of eosinophils.
Functions
(1) Contain most of the lysosomal enzymes that polymorphs have
(2) control of Histamine release and degradation in inflammation
Basophils (and mast cells)
Characteristics
(1) Contain coarse metachromatic granules.
(2) Contain, histamine and proteolytic enzymes
Functions
Histamine: release which causes some of the changes of inflammation and allergic
reactions. .
Monocytes .
Blood monocytes form a component of. the mononuclear phagocytic system (MPS), the other being tissue macrophages The tissue macrophages may be :
(a) Fixed phagocytic. cells:
- Kuffer cell of liver.
- Sinusoidal lining cells of spleen and lymph nodes.
- Pleural and peritoneal macrophages
- Alveolar macrophages.
- Microglial cells.
(b) Wandering macrophages or tissue histiocytes.
The tissue histiocytes are derived from blood monocytes.
Characteristics
.(1)Seen in inflammation of some duration, as they -outlive polymorphs.
(2) Actively phagocytic and motile.
(3) Fuse readily to from giant cells in certain situations.
Function
(1) Phagocytosis.
(2) Lysosomal enzyme secretion.
(3) Site of synthesis of some components of complement.
(4) Antigen handling and processing before presenting it to the Immune competent cell.
(5) Secretion of lysosyme and interferon.
Giant cells can be
(A) Physiological
Syncytiotrophoblast, megakatyocytes, striated muscle, osteoclast.
(B) Pathological:
Foreign body: in the presence of particulate foreign matter like talc, suture material etc. and in certain infections_e g fungal.
Langhan's type: a variant of foreign body giant cell seen in tuberculosis.
Touton type in lipid rich situations like Xanthomas, lipid granulomas etc.
(iv) Aschoff cell in rheumatic carditis.
(v) Tumour gjant cells e.g. Reid-Sternberg cell in Hodgkin's Lymphoma, giant cells in any malignancy.
Lymphocytes and Plasma cells
These are the small mononuclear cell comprising the immune system
They are less motile than_macrophages and neutrophils and are seen in chronic inflammation and immune based diseases.
Coccidioidomycosis (Valley Fever; San Joaquin Fever)
A disease caused by the fungus Coccidioides immitis, usually occurring in a primary form as an acute benign asymptomatic or self-limited respiratory infection, occasionally disseminating to cause focal lesions in skin, subcutaneous tissues, lymph nodes, bones, liver, kidneys, meninges, brain, or other tissues.
Primary coccidioidomycosis is usually asymptomatic, but nonspecific respiratory symptoms resembling influenza or acute bronchitis sometimes occur or, less often, acute pneumonia or pleural effusion. Symptoms, in decreasing order of frequency, include fever, cough, chest pain, chills, sputum production, sore throat, and hemoptysis.
Progressive disseminated coccidioidomycosis may develop a few weeks, months, or occasionally years after primary infections,, is more common in men than women and is more likely to occur in association with HIV infection, immunosuppressive therapy
Symptoms often are nonspecific, including low-grade fever, anorexia, weight loss, and weakness. Extensive pulmonary involvement may cause progressive cyanosis, dyspnea, and discharge of mucopurulent or bloody sputum. Extrapulmonary lesions are usually focal, involving one or more tissue sites in bones, joints, skin, subcutaneous tissues, viscera, brain, or meninges. Draining sinus tracts sometimes connect deeper lesions to the skin. Localized extrapulmonary lesions often become chronic and recur frequently, sometimes long after completion of seemingly successful antifungal therapy.
Strep viridans
Mixed species, all causing α-hemolysis. All are protective normal flora which block adherence of other pathogens. Low virulence, but can cause some diseases:
Sub-acute endocarditis can damage heart valves.
Abscesses can form which are necrotizing. This is the primary cause of liver abscesses.
Dental caries are caused by Str. mutans. High virulence due to lactic acid production from glucose fermentation. This is why eating sugar rots teeth. Also have surface enzymes which deposit plaque.