Talk to us?

General Pathology - NEETMDS- courses
NEET MDS Lessons
General Pathology

Surface Defence Mechanisms

1. Skin:

(i) Mechanical barrier of keratin and desquamation.

(ii) Resident commensal organisms

(iii)Acidity of sweat.

(iv) Unsaturated fatty acids of sebum

2. Oropharyngeal

(i)Resident flora

(ii) Saliva, rich in lysozyme, mucin and Immunoglobulins (lgA).

3. Gastrointestinal tract.-

(i) Gastric HCI

(ii) Commensal organisms in Intestine

(iii) Bile salts

(iv) IgA.

(v) Diarrhoeal expulsion of irritants.

4. Respiratory tract:

(i) Trapping in turbinates

(ii) Mucus trapping

(iii) Expulsion by coughing and sneezing.

(iv) Ciliary propulsion.

(V) Lysozymes and antibodies in secretion.

(vi) Phagocytosis by alveolar macrophages.

5. Urinary tract:

(i) Flushing action.

(ii) Acidity

(iii) Phagocytosis by urothelial cells.

6. Vagina.-

(i) Desquamation.

(ii) Acid barrier.

(iii) Doderlein's bacilli (Lactobacilli)

7. Conjunctiva:

Lysozymes and IgA in tears

Human immunodeficiency virus (HIV)
1. Part of the Retroviridae family (i.e., it is a retrovirus).
2. Basic virion structure
a. The nucleocapsid contains single stranded RNA and three enzymes: reverse transcriptase, integrase, and protease.

b. An exterior consists of two glycoproteins, gp120 and gp41, which are imbedded in the lipid bilayer. This lipid bilayer was obtained from the host cell via budding.

3. Virion characteristics

a. The HIV genome includes:

(1) gag gene—codes for core proteins.
(2) pol gene—codes for its three enzymes.
(3) env gene—codes for its two envelope glycoproteins.

b. HIV enzymes

(1) Reverse transcriptase—reverse transcription of RNA to viral DNA.
(2) Integrase—responsible for integrating viral DNA into host DNA.
(3) Protease—responsible for cleaving precursor proteins. 

4. Pathogenicity

a. HIV mainly infects CD4 lymphocytes, or helper T cells. Its envelope protein, gp120, binds specifically with CD4 surface
receptors. After entry, viral RNA is transcribed by reverse transcriptase to viral DNA and integrated into  the host DNA. New virions are synthesized and released by lysis of the host cell.

b. The predominant site of HIV replication is lymphoid tissues.
c. Although HIV mainly infects CD4 helper T cells, it can bind to any cell with a CD4 receptor, including macrophages, monocytes, lymph node dendritic cells, and a selected number of nerve cells. Macrophages are the first cells infected by HIV.

5. HIV infection versus acquired immunodeficiency syndrome (AIDS).

a. AIDS describes an HIV-infected person who has one of the following conditions:

(1) A CD4 lymphocyte count of less than 200.
(2) The person is infected with an opportunistic infection or other AIDS-defining illness, including (but not limited to) tuberculosis, recurrent pneumonia infections, or invasive cervical cancer.
b. The cause of death in an AIDS patient is most likely due to an opportunistic infection.

6. Common opportunistic infections associated with AIDS:
a. Pneumonia caused by Pneumocystis jiroveci (carinii). 
b. Tuberculosis.
c. Periodontal disease—severe gingivitis, periodontitis, ANUG, necrotizing stomatitis.
d. Candidiasis.
e. Oral hairy leukoplakia (EBV).
f. Kaposi’s sarcoma (HHV-8).
g. Recurrent VZV infections.
h. Condyloma acuminatum or verruca vulgaris (warts, HPV)—less common.
i. CMV infections.
j. Disseminated herpes simplex, herpes zoster.
k. Hodgkin’s, non-Hodgkin’s lymphoma.

7. Laboratory diagnosis of HIV

a. ELISA test—detects HIV antibodies.
False negatives do occur.

b. Western blot—detects HIV proteins.
There is a 99% accuracy rate when both the ELISA test and Western blot are used to diagnose HIV infection.
c. PCR—more sensitive; can amplify and identify the virus at an early stage.

8. Treatment
a. Inhibitors of reverse transcriptase.

(1) Nucleoside analogs
(a) Inhibit viral replication via competitive inhibition.
(b) Examples: zidovudine (AZT), didanosine, lami- vudine, stavudine.

(2) Nonnucleoside inhibitors.
(a) Act by binding directly to reverse transcriptase.
(b) Examples: nevirapine, delavirdine.
b. Protease inhibitor.
c. “Triple cocktail” therapy—often consists of two nucleoside inhibitors and a protease inhibitor.

Summary 
Hepatitis A → ssRNA → Picornavirus → Oral–anal
Hepatitis B → dsDNA → Hepadnavirus → Sexual contact , Blood (needles), Perinatal
Hepatitis C → ssRNA → Flavivirus → Sexual contact , Blood (needles)
Hepatitis D → ssRNA → Deltavirus → Sexual contact, Blood (needles)
Hepatitis E → ssRNA → Calicivirus → Oral–anal 

Emphysema

Emphysema is a chronic lung disease. It is often caused by exposure to toxic chemicals or long-term exposure to tobacco smoke.

Signs and symptoms

loss of elasticity of the lung tissue

destruction of structures supporting the alveoli

destruction of capillaries feeding the alveoli

The result is that the small airways collapse during expiration, leading to an obstructive form of lung disease

Features are: shortness of breath on exertion

 hyperventilation and an expanded chest.

As emphysema progresses, clubbing of the fingers may be observed, a feature of longstanding hypoxia.

Emphysema patients are sometimes referred to as "pink puffers". This is because emphysema sufferers may hyperventilate to maintain adequate blood oxygen levels. Hyperventilation explains why emphysema patients do not appear cyanotic as chronic bronchitis (another COPD disorder) sufferers often do; hence they are "pink" puffers (adequate oxygen levels in the blood) and not "blue" bloaters (cyanosis; inadequate oxygen in the blood).

Diagnosis

spirometry (lung function testing), including diffusion testing

X-rays,  high resolution spiral chest CT-scan,

Bronchoscopy, blood tests, pulse oximetry and arterial blood gas sampling.

Pathophysiology :

Permanent destructive enlargement of the airspaces distal to the terminal bronchioles without obvious fibrosis

Oxygen is inhaled in normal breathing

When toxins such as smoke are breathed into the lungs, the particles are trapped by the hairs and cannot be exhaled, leading to a localised inflammatory response. Chemicals released during the inflammatory response (trypsin, elastase, etc.) are released and begin breaking down the walls of alveoli. This leads to fewer but larger alveoli, with a decreased surface area and a decreased ability to take up oxygen and loose carbon dioxide. The activity of another molecule called alpha 1-antitrypsin normally neutralizes the destructive action of one of these damaging molecules.

After a prolonged period, hyperventilation becomes inadequate to maintain high enough oxygen levels in the blood, and the body compensates by vasoconstricting appropriate vessels. This leads to pulmonary hypertension. This leads to enlargement and increased strain on the right side of the heart, which in turn leads to peripheral edema (swelling of the peripherals) as blood gets backed up in the systemic circulation, causing fluid to leave the circulatory system and accumulate in the tissues.

Emphysema occurs in a higher proportion in patient with decreased alpha 1-antitrypsin (A1AT) levels

Prognosis and treatment

Emphysema is an irreversible degenerative condition

Supportive  treatmentis by supporting the breathing with anticholinergics, bronchodilators and (inhaled or oral) steroid medication, and supplemental oxygen as required

Lung volume reduction surgery (LVRS) can improve the quality of life for only  selected patients.

Osteoporosis
 
is characterized by increased porosity of the skeleton resulting from reduced bone mass. The disorder may be localized to a certain bone (s), as in disuse osteoporosis of a limb, or generalized involving the entire skeleton. Generalized osteoporosis may be primary, or secondary


Primary generalized osteoporosis
• Postmenopausal
• Senile
Secondary generalized osteoporosis

A. Endocrine disorders
• Hyperparathyroidism
• Hypo or hyperthyroidism
• Others

B. Neoplasia
• Multiple myeloma
• Carcinomatosis 

C. Gastrointestinal disorders
• Malnutrition & malabsorption
• Vit D & C deficiency
• Hepatic insufficiency 

D. Drugs
• Corticosteroids
• Anticoagulants
• Chemotherapy
• Alcohol 

E. Miscellaneous
• osteogenesis imperfecta
• immobilization
• pulmonary disease 

Senile and postmenopausal osteoporosis are the most common forms. In the fourth decade in both sexes, bone resorption begins to overrun bone deposition. Such losses generally occur in areas containing abundant cancelloues bone such as the vertebrae & femoral neck. The postmenopausal state accelerates the rate of loss; that is why females are more susceptible to osteoporosis and its complications. 

Gross features
• Because of bone loss, the bony trabeculae are thinner and more widely separated than usual. This leads to obvious porosity of otherwise spongy cancellous bones

Microscopic features
• There is thinning of the trabeculae and widening of Haversian canals.
• The mineral content of the thinned bone is normal, and thus there is no alteration in the ratio of minerals to protein matrix

Etiology & Pathogenesis

• Osteoporosis involves an imbalance of bone formation, bone resorption, & regulation of osteoclast activation. It occurs when the balance tilts in favor of resorption.
• Osteoclasts (as macrophages) bear receptors (called RANK receptors) that when stimulated activate the nuclear factor (NFκB) transcriptional pathway. RANK ligand synthesized by bone stromal cells and osteoblasts activates RANK. RANK activation converts macrophages into bone-crunching osteoclasts and is therefore a major stimulus for bone resorption.
• Osteoprotegerin (OPG) is a receptor secreted by osteoblasts and stromal cells, which can bind RANK ligand and by doing so makes the ligand unavailable to activate RANK, thus limiting osteoclast bone-resorbing activity.
• Dysregulation of RANK, RANK ligand, and OPG interactions seems to be a major contributor in the pathogenesis of osteoporosis. Such dysregulation can occur for a variety of reasons, including aging and estrogen deficiency.
• Influence of age: with increasing age, osteoblasts synthetic activity of bone matrix progressively diminished in the face of fully active osteoclasts.
• The hypoestrogenic effects: the decline in estrogen levels associated with menopause correlates with an annual decline of as much as 2% of cortical bone and 9% of cancellous bone. The hypoestrogenic effects are attributable in part to augmented cytokine production (especially interleukin-1 and TNF). These translate into increased RANK-RANK ligand activity and diminished OPG.
• Physical activity: reduced physical activity increases bone loss. This effect is obvious in an immobilized limb, but also occurs diffusely with decreased physical activity in older individuals.
• Genetic factors: these influence vitamin D receptors efficiency, calcium uptake, or PTH synthesis and responses.
• Calcium nutritional insufficiency: the majority of adolescent girls (but not boys) have insufficient dietary intake of calcium. As a result, they do not achieve the maximal peak bone mass, and are therefore likely to develop clinically significant osteoporosis at an earlier age.
• Secondary causes of osteoporosis: these include prolonged glucocorticoid therapy (increases bone resorption and reduce bone synthesis.)
The clinical outcome of osteoporosis depends on which bones are involved. Thoracic and lumbar vertebral fractures are extremely common, and produce loss of height and various deformities, including kyphoscoliosis that can compromise respiratory function. Pulmonary embolism and pneumonia are common complications of fractures of the femoral neck, pelvis, or spine. 

FUNGAL INFECTION

Aspergillosis

Opportunistic infections caused by Aspergillus sp and inhaled as mold conidia, leading to hyphal growth and invasion of blood vessels, hemorrhagic necrosis, infarction, and potential dissemination to other sites in susceptible patients.

Symptoms and Signs: Noninvasive or, rarely, minimally locally invasive colonization of preexisting cavitary pulmonary lesions also may occur in the form of fungus ball (aspergilloma) formation or chronic progressive aspergillosis.

Primary superficial invasive aspergillosis is uncommon but may occur in burns, beneath occlusive dressings, after corneal trauma (keratitis), or in the sinuses, nose, or ear canal.

Invasive pulmonary aspergillosis usually extends rapidly, causing progressive, ultimately fatal respiratory failure unless treated promptly and aggressively. A. fumigatus is the most common causative species.

 Extrapulmonary disseminated aspergillosis may involve the liver, kidneys, brain, or other tissues and is usually fatal. Primary invasive aspergillosis may also begin as an invasive sinusitis, usually caused by A. flavus, presenting as fever with rhinitis and headache

General chromosome abnormalities
The normal human cell contains 46 chromosomes, including 22 homologous pairs of autosomes and one pair of sex chromosomes (XX for female and XY for male). A somatic cell is diploid, containing 46 chromosomes. Gametes are haploid, containing 23 chromosomes.
Aneuploidy
(a) Any deviation in the number of chromosomes, whether fewer or more, from the normal haploid number of chromosomes.
(b) Nondisjunction—a common cause of aneuploidy. It is the failure of chromosomes to pass to separate cells during meiotic or mitotic cell division.
(c) Often seen in malignant tumors.
 

Deletion: loss of a sequence of DNA from a chromosome.
 

Translocation: the separation of a chromosome and the attachment of the area of separation to another chromosome.

Explore by Exams