Talk to us?

- NEETMDS- courses
NEET MDS Lessons
General Pathology

Hepatitis B virus (“serum hepatitis”)
- Hepatitis B (HBV) may cause acute hepatitis, a carrier state, chronic active disease, chronic persistent disease, fulminant hepatitis, or hepatocellular carcinoma  
- It is caused by a DNA virus, the virions are called Dane particles. 

b. Incubation period: ranges from 4 to 26 weeks, but averages 6 to 8 weeks.
a. Symptoms last 2 to 4 weeks, but may be asymptomatic.
c. The hepatitis B viral structure has also been named the Dane particle.

Transmission is through contact with infected blood or other body fluids. It can be transmitted by sexual intercourse and is frequently transmitted to newborns of infected mothers by exposure to maternal blood during the birth process
- Associated antigens include core antigen (HBcAg) and surface antigen (HBsAg).
The latter is usually identified in the blood for diagnosis. HbsAg is the earliest marker of acute infection.
HBeAg is also associated with the core. Its presence indicates active acute infection; when anti-HBeAg appears, the patient is no longer infective
- HBV is associated with hepatocellular carcinoma; HBsAg patients have a 200-fold greater risk of hepatocellular carcinoma than subjects who have not been exposed. 

Antibodies  
- Antibodies to surface antigen (anti-HBs) are considered protective and usually appear after the disappearance of the virus.
-Antibodies to HBcAg are not protective. They are , detected just after the appearance of HBsAg and are used to confirm infection when both HBsAg and anti HBs are absent (window).
- Antibodies to HBeAg are associated with a low risk of infectivity.

d. Infection increases the risk for hepatocellular carcinoma.

e. Laboratory assay of hepatitis B antigens and antibodies:

(1) HBsAg—present only in acute infection or chronic carriers.
(2) HBsAb—detectable only after 6 months post-initial infection. HBsAb is present in chronic infections or vaccinated individuals. Note: HBsAb is also being produced during acute infections and in chronic carriers; however, it is not detectable via current laboratory methods.
(3) HBcAg—present in either acute or chronic infection.
(4) HBeAg—present when there is active viral replication. It signifies that the carrier is highly infectious.
(5) HBeAb—appears after HBeAg. It signifies that the individual is not as contagious.

f. Vaccine: contains HBsAg.

g. Prevention: immunoglobulins (HBsAb) are available.

DIABETES MELLITUS 
a group of metabolic disorders sharing the common underlying characteristic of hyperglycemia.  
Diabetes is an important disease because
1. It is common (affects 7% of the population). 
2. It increases the risk of atherosclerotic coronary artery and cerebrovascular diseases.
3. It is a leading cause of 
   a. Chronic renal failure
   b. Adult-onset blindness
   c. Non traumatic lower extremity amputations (due to gangrene) 
     
Classification 
Diabetes is divided into two broad classes:
1. Type1 diabetes (10%): characterized by an absolute deficiency of insulin secretion caused by pancreatic βcell destruction, usually as a result of an autoimmune attack.

2. Type2 diabetes (80%): caused by a combination of peripheral resistance to insulin action and an inadequate secretion of insulin from the pancreatic β cells in response to elevated blood glucose levels. 

The long-term complications in kidneys, eyes, nerves, and blood vessels are the same in both types.

Pathogenesis
Type 1 diabetes is an autoimmune disease and as in all such diseases, genetic susceptibility and environmental influences play important roles in the pathogenesis. The islet destruction is caused primarily by T lymphocytes reacting against immunologic epitopes on the insulin hormone located within β-cell; this results in a reduction of β-cell mass. The reactive T cells include CD4+ T cells of the TH1 subset, which cause tissue injury by activating macrophages, and CD8+ cytotoxic T lymphocytes; these directly kill β cells and also secrete cytokines that activate further macrophages. The islets show cellular necrosis and lymphocytic infiltration (insulitis). Autoantibodies against a variety of β-cell antigens, including insulin are also detected in the blood and may also contribute to islet damage. 

Type 2 Diabetes Mellitus: the pathogenesis remains unsettled. Environmental influences, such as inactive life style and dietary habits that eventuates in obesity, clearly have a role. Nevertheless, genetic factors are even more important than in type 1 diabetes. Among first-degree relatives with type 2 diabetes the risk of developing the disease is 20% to 40%, as compared with 5% in the general population. 
The two metabolic defects that characterize type 2 diabetes are 1.  A decreased ability of peripheral tissues to respond to insulin (insulin resistance) and 2. β-cell dysfunction manifested as inadequate insulin secretion in the face of hyperglycemia. In most cases, insulin resistance is the primary event and is followed by increasing degrees of β-cell dysfunction.

Morphology of Diabetes and Its Late Complications

The important morphologic changes are related to the many late systemic complications of diabetes and thus are likely to be found in arteries (macrovascular disease), basement membranes of small vessels (microangiopathy), kidneys (diabetic nephropathy), retina (retinopathy), and nerves (neuropathy). These changes are seen in both type 1 and type 2 diabetes. 

The changes are divided into pancreatic & extrapancreatic 
A. Pancreatic changes are inconstant and are more commonly associated with type 1 than with type 2 diabetes.
One or more of the following alterations may be present.
1. Reduction in the number and size of islets
2. Leukocytic infiltration of the islets (insulitis) principally byT lymphocytes.  

3. Amyloid replacement of islets; which is seen in advanced stages

B. Extrapancreatic changes 

1. Diabetic macrovascular disease is reflected as accelerated atherosclerosis affecting the aorta and other large and medium-sized arteries including the coronaries. Myocardial infarction is the most common cause of death in diabetics. Gangrene of the lower limbs due to advanced vascular disease, is about 100 times more common in diabetics than in the general population. 
2. Hyaline arteriolosclerosis
 is the vascular lesion associated with hypertension. It is both more prevalent and more severe in diabetics than in nondiabetics, but it is not specific for diabetes and may be seen in elderly nondiabetics without hypertension.
3. Diabetic microangiopathy
 is one of the most consistent morphologic features of diabetes, which reflected morphologically as diffuse thickening of basement membranes. The thickening is most evident in the capillaries of the retina, renal glomeruli, and peripheral nerves. The thickened capillary basement membranes are associated with leakiness to plasma proteins. The microangiopathy underlies the development of diabetic nephropathy, retinopathy, and some forms of neuropathy.
4. Diabetic Nephropathy: renal failure is second only to myocardial infarction as a cause of death from diabetes.

Three lesions encountered are: 
1. Glomerular lesions
2. Renal vascular lesions, principally arteriolosclerosis; and
3. Pyelonephritis, including necrotizing papillitis.  

Glomerular lesions:  these include 
a. diffuse glomerular capillary basement membrane thickening
b. diffuse glomerular sclerosis : diffuse increase in mesangial matrix; always associated with the above.  
c. nodular glomerulosclerosis (Kimmelstiel-Wilson lesion) refers to a rounded deposits of a laminated matrix situated in the periphery of the glomerulus 

Pyelonephritis: both acute and chronic pyelonephritis are more common & more severe 

Ocular Complications of Diabetes: Visual impairment up to total blindness may occur in long-standing diabetes. The ocular involvement may take the form of 
a. retinopathy 
b. cataract formation
c. glaucoma 

In both forms of long-standing diabetes, cardiovascular events such as myocardial infarction, renal vascular insufficiency, and cerebrovascular accidents are the most common causes of mortality. Diabetic nephropathy is a leading cause of end-stage renal disease. By 20 years after diagnosis, more than 75% of type 1 diabetics and about 20% of type 2 diabetics with overt renal disease will develop end-stage renal disease, requiring dialysis or renal transplantation. 
Diabetics are plagued by an enhanced susceptibility to infections of the skin, as well as to tuberculosis, 
pneumonia, and pyelonephritis. Such infections cause the deaths of about 5% of diabetics. 

Posterior Pituitary Syndromes 

The posterior pituitary, or neurohypophysis, is composed of modified glial cells (termed pituicytes) and axonal processes extending from nerve cell bodies in the hypothalamus. The hypothalamic neurons produce two peptides: antidiuretic hormone (ADH) and oxytocin that are stored in axon terminals in the neurohypophysis.

The clinically important posterior pituitary syndromes involve ADH production and include  
1. Diabetes insipidus and 
2. Inappropriate secretion of high levels of ADH.  

- ADH is released into the general circulation in response to increased plasma oncotic pressure & left atrial distention. 
- It acts on the renal collecting tubules to increase the resorption of free water. 
- ADH deficiency causes  diabetes insipidus, a condition characterized by polyuria. If the cause is related to ADH Diabetes insipidus from - - ADH deficiency is designated as central, to differentiate it from nephrogenic diabetes insipidus due to renal tubular unresponsiveness to circulating ADH. 
- The clinical manifestations of both diseases are similar and include the excretion of large volumes of dilute urine with low specific gravity. Serum sodium and osmolality are increased as a result of excessive renal loss of free water, resulting in thirst and polydipsia. 

- ADH excess causes resorption of excessive amounts of free water, with resultant hyponatremia. 
- The most common causes of the syndrome include the secretion of ectopic ADH by malignant neoplasms (particularly small-cell carcinomas of the lung), and local injury to the hypothalamus and/or neurohypophysis. 

- The clinical manifestations are dominated by hyponatremia, cerebral edema, and resultant neurologic dysfunction.

Pulmonary embolism

A pulmonary embolism (thromboembolism) occurs when a blood clot, generally a venous thrombus, becomes dislodged from its site of formation and embolizes to the arterial blood supply of one of the lungs.

Clinical presentation

Signs of PE are sudden-onset dyspnea (shortness of breath, 73%), tachypnea (rapid breathing, 70%), chest pain of "pleuritic" nature (worsened by breathing, 66%), cough (37%), hemoptysis (coughing up blood, 13%), and in severe cases, cyanosis, tachycardia (rapid heart rate), hypotension, shock, loss of consciousness, and death. Although most cases have no clinical evidence of deep venous thrombosis in the legs, findings that indicate this may aid in the diagnosis.

Diagnosis

The gold standard for diagnosing pulmonary embolism (PE) is pulmonary angiography

An electrocardiogram may show signs of right heart strain or acute cor pulmonale in cases of large PEs

In massive PE, dysfunction of the right side of the heart can be seen on echocardiography, an indication that the pulmonary artery is severely obstructed and the heart is unable to match the pressure.

Treatment

Acutely, supportive treatments, such as oxygen or analgesia

In most cases, anticoagulant therapy is the mainstay of treatment. Heparin or low molecular weight heparins are administered initially, while warfarin therapy is given

HERPES ZOSTER (Shingles)

An infection with varicella-zoster virus primarily involving the dorsal root ganglia and characterized by vesicular eruption and neuralgic pain in the dermatome of the affected root ganglia.

caused by varicella-zoster virus

Symptoms and Signs

Pain along the site of the future eruption usually precedes the rash by 2 to 3 days. Characteristic crops of vesicles on an erythematous base then appear, following the cutaneous distribution of one or more adjacent dermatomes

Eruptions occur most often in the thoracic or lumbar region and are unilateral. Lesions usually continue to form for about 3 to 5 days

Geniculate zoster (Ramsay Hunt's syndrome) results from involvement of the geniculate ganglion. Pain in the ear and facial paralysis occur on the involved side. A vesicular eruption occurs in the external auditory canal, and taste may be lost in the anterior two thirds of the tongue

HERPES SIMPLEX

An infection with herpes simplex virus characterized by one or many clusters of small vesicles filled with clear fluid on slightly raised inflammatory bases.

The two types of herpes simplex virus (HSV) are HSV-1 and HSV-2. HSV-1 commonly causes herpes labialis, herpetic stomatitis, and keratitis; HSV-2 usually causes genital herpes, is transmitted primarily by direct (usually sexual) contact with lesions, and results in skin lesions

Primary infection of HSV-1 typically causes a gingivostomatitis, which is most common in infants and young children. Symptoms include irritability, anorexia, fever, gingival inflammation, and painful ulcers of the mouth.

Primary infection of HSV-2 typically occurs on the vulva and vagina or penis in young adults

Herpetic whitlow, a swollen, painful, and erythematous lesion of the distal phalanx, results from inoculation of HSV through a cutaneous break or abrasion and is most common in health care workers.

EMBOLISM 

An embolus is a detached intravascular solid, liquid, or gaseous mass that is carried by the blood to a site distant from its point of origin

99% due to dislodged thrombus

Types: 
1. Thrombo-embolism 
2. Fat embolism 
3. Air embolism 
4. Nitrogen embolism

 Emboli result in partial or complete vascular occlusion. 

 The consequences of thromboembolism include ischemic necrosis (infarction) of downstream tissue

PULMONARY THROMBOEMBOLISM
- 95% originate from deep veins of L.L

Special variants: - Saddle embolus: at bifurcation of Pulmonary artery

Paradoxical embolus: Passage of an embolus from venous to systemic circulation through IAD, IVD

CLINICAL CONSEQUENCE OF PULMONARY THROMBOEMBOLISM :

Most pulmonary emboli (60% to 80%) are clinically silent because they are small 

a. Organization: 60 – 80 % 
b. Sudden death, Right ventricle failure, CV collapse when more than 60 % of pulmonary vessels are obstructed. 
c. Pulmonary hemorrhage: obstruction of medium sized arteries. 
d. Pulmonary Hypertension and right ventricular failure due to multiple emboli over a long time.

Systemic thromboembolism

Emboli traveling within the arterial circulation 
80% due to intracardiac mural thrombi
2/3  Lt. ventricular failure

 The major targets are: 
 
 1. Lower limbs 75% 
 2. Brain 10% 
 3. Intestines 
 4. Kidneys 
 5. Spleen

Fat embolism 

Causes 
1. Skeletal injury (fractures of long bones ) 
2. Adipose tissue Injury

Mechanical obstruction is exacerbated by free fatty acid release from the fat globules, causing local toxic injury to endothelium. - In skeletal injury, fat embolism occurs in 90% of cases, but only 10% or less have clinical findings


 Fat embolism syndrome is characterized by 
 
 A. Pulmonary Insufficiency 
 B. Neurologic symptoms 
 C. Anemia 
 D. Thrombocytopenia 
 E. Death in 10% of the case 
 
 Symptoms appears 1-3 days after injury
 
 Tachypnea, Dyspnea, Tachycardia and Neurological symptoms
 
Air Embolism 

causes: 1. Obstetric procedures 
2. Chest wall injury 
3. Decompression sickness: in Scuba and deep-sea divers ((nitrogen )) 

 More then 100ml of air is required to produce clinical effect. 
 
 Clinical consequence
 1. Painful joints: due to rapid formation of gas bubbles within Sk. Muscles and supporting tissues. 
 2. Focal ischemia in brain and heart 
 3. Lung edema, Hemorrhage, atelectasis, emphysema, which all lead to Respiratory distress. (chokes) 
 4. caisson disease: gas emboli in the bones leads to multiple foci of ischemic necrosis, usually the heads of the femurs, tibias, and humeri
 
 Amniotic fluid embolism 
 - Mortality Rate = 20%-40% 
 - Very rare complication of labor 
 
 - due to infusion of amniotic fluid into maternal circulation via tears in placental membranes and rupture of uterine veins. 
 - sudden severe dyspnea, cyanosis, and hypotensive shock, followed by seizures, DIC and coma 
 
 - Findings: Squamous cells, languo hair, fat, mucin …..etc within the pulmonary microcirculation

Explore by Exams