NEET MDS Lessons
General Pathology
Osteoporosis
is characterized by increased porosity of the skeleton resulting from reduced bone mass. The disorder may be localized to a certain bone (s), as in disuse osteoporosis of a limb, or generalized involving the entire skeleton. Generalized osteoporosis may be primary, or secondary
Primary generalized osteoporosis
• Postmenopausal
• Senile
Secondary generalized osteoporosis
A. Endocrine disorders
• Hyperparathyroidism
• Hypo or hyperthyroidism
• Others
B. Neoplasia
• Multiple myeloma
• Carcinomatosis
C. Gastrointestinal disorders
• Malnutrition & malabsorption
• Vit D & C deficiency
• Hepatic insufficiency
D. Drugs
• Corticosteroids
• Anticoagulants
• Chemotherapy
• Alcohol
E. Miscellaneous
• osteogenesis imperfecta
• immobilization
• pulmonary disease
Senile and postmenopausal osteoporosis are the most common forms. In the fourth decade in both sexes, bone resorption begins to overrun bone deposition. Such losses generally occur in areas containing abundant cancelloues bone such as the vertebrae & femoral neck. The postmenopausal state accelerates the rate of loss; that is why females are more susceptible to osteoporosis and its complications.
Gross features
• Because of bone loss, the bony trabeculae are thinner and more widely separated than usual. This leads to obvious porosity of otherwise spongy cancellous bones
Microscopic features
• There is thinning of the trabeculae and widening of Haversian canals.
• The mineral content of the thinned bone is normal, and thus there is no alteration in the ratio of minerals to protein matrix
Etiology & Pathogenesis
• Osteoporosis involves an imbalance of bone formation, bone resorption, & regulation of osteoclast activation. It occurs when the balance tilts in favor of resorption.
• Osteoclasts (as macrophages) bear receptors (called RANK receptors) that when stimulated activate the nuclear factor (NFκB) transcriptional pathway. RANK ligand synthesized by bone stromal cells and osteoblasts activates RANK. RANK activation converts macrophages into bone-crunching osteoclasts and is therefore a major stimulus for bone resorption.
• Osteoprotegerin (OPG) is a receptor secreted by osteoblasts and stromal cells, which can bind RANK ligand and by doing so makes the ligand unavailable to activate RANK, thus limiting osteoclast bone-resorbing activity.
• Dysregulation of RANK, RANK ligand, and OPG interactions seems to be a major contributor in the pathogenesis of osteoporosis. Such dysregulation can occur for a variety of reasons, including aging and estrogen deficiency.
• Influence of age: with increasing age, osteoblasts synthetic activity of bone matrix progressively diminished in the face of fully active osteoclasts.
• The hypoestrogenic effects: the decline in estrogen levels associated with menopause correlates with an annual decline of as much as 2% of cortical bone and 9% of cancellous bone. The hypoestrogenic effects are attributable in part to augmented cytokine production (especially interleukin-1 and TNF). These translate into increased RANK-RANK ligand activity and diminished OPG.
• Physical activity: reduced physical activity increases bone loss. This effect is obvious in an immobilized limb, but also occurs diffusely with decreased physical activity in older individuals.
• Genetic factors: these influence vitamin D receptors efficiency, calcium uptake, or PTH synthesis and responses.
• Calcium nutritional insufficiency: the majority of adolescent girls (but not boys) have insufficient dietary intake of calcium. As a result, they do not achieve the maximal peak bone mass, and are therefore likely to develop clinically significant osteoporosis at an earlier age.
• Secondary causes of osteoporosis: these include prolonged glucocorticoid therapy (increases bone resorption and reduce bone synthesis.)
The clinical outcome of osteoporosis depends on which bones are involved. Thoracic and lumbar vertebral fractures are extremely common, and produce loss of height and various deformities, including kyphoscoliosis that can compromise respiratory function. Pulmonary embolism and pneumonia are common complications of fractures of the femoral neck, pelvis, or spine.
Congenital heart defect
Congenital heart defects can be broadly categorised into two groups,
o acyanotic heart defects ('pink' babies) :
An acyanotic heart defect is any heart defect of a group of structural congenital heart defects, approximately 75% of all congenital heart defects.
It can be subdivided into two groups depending on whether there is shunting of the blood from the left vasculature to the right (left to right shunt) or no shunting at all.
Left to right shunting heart defects include
- ventricular septal defect or VSD (30% of all congenital heart defects),
- persistent ductus arteriosus or PDA,
- atrial septal defect or ASD,
- atrioventricular septal defect or AVSD.
Acyanotic heart defects without shunting include
- pulmonary stenosis, a narrowing of the pulmonary valve,
- aortic stenosis
- coarctation of the aorta.
cyanotic heart defects ('blue' babies).
obstructive heart defects
cyanotic heart defect is a group-type of congenital heart defect. These defects account for about 25% of all congenital heart defects. The patient appears blue, or cyanotic, due to deoxygenated blood in the systemic circulation. This occurs due to either a right to left or a bidirectional shunt, allowing significant proportions of the blood to bypass the pulmonary vascular bed; or lack of normal shunting, preventing oxygenated blood from exiting the cardiac-pulmonary system (as with transposition of the great arteries).
Defects in this group include
hypoplastic left heart syndrome,
tetralogy of Fallot,
transposition of the great arteries,
tricuspid atresia,
pulmonary atresia,
persistent truncus arteriosus.
Streptococcal pharyngitis:
A disease of young people, enlarged lymphoid nodules and keratin plugs in the tonsillar pits is seen Complications include retro-pharyngeal abscess (quinsy)
Cellulitis of the deep tissues of the neck is Ludwig's angina
Scarlet fever ("scarlatina") is a strep throat caused by a streptococcus with the gene to make one of the erythrogenic toxins, Patients have a rash with PMNs
Streptococcal skin infections (Impetigo)
Erysipelas is a severe skin infection caused by group A strep; geographic of red, thickened, indurated areas of the skin are characteristic. Unlike staph infections, there is usually little or no tissue necrosis
Post-streptococcal hypersensitivity diseases include rheumatic fever, post-streptococcal glomerulonephritis, and some cases of erythema nodosum
ATROPHY
It is the acquired decrease in the size of an organ due to decrease in the size and/or number of its constituent cells.
Causes:
(1) Physiological
- Foetal involution.
o Branchial clefts.
o Ductus arterious.
- Involution of thymus and other lymphoid organs in childhood and adolescence.
- In adults:
o Post-partum uterus.
o Post-menopausal ovaries and uterus
o Post-lactational breast
o Thymus.
(2) Pathological:
- Generalised as in
o Ageing.
o Severe starvation and cachexia
- Localised :
o Disuse atropy of bone and muscle.
o Ischaemic atrophy as in arteriosclerotic kidney. .
o Pressure atrophy due to tumours and of kidney in hydronephrosis.
o Lack of trophic stimulus to endocrines and gonads.
Post viral (post hepatitic) cirrhosis (15-20%)
Cause:- Viral hepatitis (mostly HBV or HCV)
Acute hepatitis → chronic hepatitis → cirrhosis.
Pathology
Liver is shrunken. Fatty change is absent (except with HCV). Cirrhosis is mixed.
M/E :-
Hepatocytes-show degeneration, necrosis as other types of cirrhosis.
Fibrous septa -They are thick and immature (more cellular and vascular).
- Irregular margins (piece meal necrosis).
- Heavy lymphocytic infiltrate.
Prognosis:- - More rapid course than alcoholic cirrhosis.Hepatocellular carcinoma is more liable to occur
Hypopituitarism
Hypopituitarism is caused by
1. Loss of the anterior pituitary parenchyma
a. congenital
b. acquired
2. Disorders of the hypothalamus e.g. tumors; these interfere with the delivery of pituitary hormone-releasing factors from the hypothalamus.
Most cases of anterior pituitary hypofunction are caused by the following:
1. Nonfunctioning pituitary adenomas
2. Ischemic necrosis of the anterior pituitary is an important cause of pituitary insufficiency. This requires destruction of 75% of the anterior pituitary.
Causes include
a. Sheehan syndrome, refers to postpartum necrosis of the anterior pituitary, and is the most cause. During pregnancy the anterior pituitary enlarges considerably because of an increase in the size and number of prolactin-secreting cells. However, this physiologic enlargement of the gland is not accompanied by an increase in blood supply. The enlarged gland is therefore vulnerable to ischemic injury, especially in women who develop significant hemorrhage and hypotension during the peripartum period. The posterior pituitary is usually not affected.
b. Disseminated intravascular coagulation
c. Sickle cell anemia
d. Elevated intracranial pressure
e. Traumatic injury
f. Shock states
3. Iatrogenic i.e. surgical removal or radiation-induced destruction
4. Inflammatory lesions such as sarcoidosis or tuberculosis
5. Metastatic neoplasms involving the pituitary.
6. Mutations affecting the pituitary transcription factor Pit-1
Children can develop growth failure (pituitary dwarfism) as a result of growth hormone deficiency.
Gonadotropin or gonadotropin-releasing hormone (GnRH) deficiency leads to amenorrhea and infertility in women and decreased libido, impotence, and loss of pubic and axillary hair in men. TSH and ACTH deficiencies result in symptoms of hypothyroidism and hypoadrenalism. Prolactin deficiency results in failure of postpartum lactation.
Leukaemias
Uncontrolled proliferation of leukocyte precursors (may be with associated red cell and platelet series proliferation).
Factors which may playa causal role are.
- Viral
- Radiation.
- Genetic.
Classification
1. Acule leukaemia:
a. Lymphocytic (lymphoblastic).
b. Myelocytic and promyelocytic (myeloblastic).
c. Monocytic.
d. Myelomonocytic.
e. Undifferentiated (Stem cell).
2. Chronic leukaemia:
a. Lymphocytic
b. Myelocytic
3. Miscellaneous:
a. Erythroleukaemia (De Guglielmo's disease).
b. Eosinophilic leukaemia.
c. Megakaryocytic leukaemia.