NEET MDS Lessons
General Pathology
PNEUMONIAS
Pneumonia is defined as acute inflammation of the lung parenchyma distal to the terminal bronchioles which consist of the respiratory bronchiole, alveolar ducts, alveolar sacs and alveoli. The terms 'pneumonia' and 'pneumonitis' are often used synonymously for inflammation of the lungs, while 'consolidation' (meaning solidification) is the term used for macroscopic and radiologic appearance of the lungs in pneumonia.
PATHOGENESIS.
The microorganisms gain entry into the lungs by one of the following four routes:
1. Inhalation of the microbes.
2. Aspiration of organisms.
3. Haematogenous spread from a distant focus.
4. Direct spread from an adjoining site of infection.
Failure of defense mechanisms and presence of certain predisposing factors result in pneumonias.
These conditions are as under:
1. Altered consciousness.
2. Depressed cough and glottic reflexes.
3. Impaired mucociliary transport.
4. Impaired alveolar macrophage function.
5. Endobronchial obstruction.
6. Leucocyte dysfunctions.
CLASSIFICATION. On the basis of the anatomic part of the lung parenchyma involved, pneumonias are traditionally classified into 3 main types:
1. Lobar pneumonia.
2. Bronchopneumonia (or Lobular pneumonia).
3. Interstitial pneumonia.
BACTERIAL PNEUMONIA
Bacterial infection of the lung parenchyma is the most common cause of pneumonia or consolidation of one or both the lungs. Two types of acute bacterial pneumonias are distinguished—lobar pneumonia and broncho-lobular pneumonia, each with distinct etiologic agent and morphologic changes.
1. Lobar Pneumonia
Lobar pneumonia is an acute bacterial infection of a part of a lobe, the entire lobe, or even two lobes of one or both the lungs.
ETIOLOGY.
Following types are described:
1. Pneumococcal pneumonia. More than 90% of all lobar pneumonias are caused by Streptococcus pneumoniae, a lancet-shaped diplococcus. Out of various types, type 3-S. pneumoniae causes particularly virulent form of lobar pneumonia.
2. Staphylococcal pneumonia. Staphylococcus aureus causes pneumonia by haematogenous spread of infection.
3. Streptococcal pneumonia, β-haemolytic streptococci may rarely cause pneumonia such as in children after measles or influenza.
4. Pneumonia by gram-negative aerobic bacteria. Less common causes of lobar pneumonia are gram-negative bacteria like Haemophilus influenzae, Klebsiella pneumoniae (Friedlander's bacillus), Pseudomonas, Proteus and Escherichia coli.
MORPHOLOGY. Laennec's original description divides lobar pneumonia into 4 sequential pathologic phases:
1. STAGE OF CONGESTION: INITIAL PHASE
The initial phase represents the early acute inflammatory response to bacterial infection and lasts for 1 to 2 days.
The affected lobe is enlarged, heavy, dark red and congested. Cut surface exudes blood-stained frothy fluid.
Microscopic Examination
i) Dilatation and congestion of the capillaries in the alveolar walls.
ii) Pale eosinophilic oedema fluid in the air spaces.
iii) A few red cells and neutrophils in the intra-alveolar fluid.
iv) Numerous bacteria demonstrated in the alveolar fluid by Gram's staining.
2. RED HEPATISATION: EARLY CONSOLIDATION
This phase lasts for2 to 4 days. The term hepatisation in pneumonia refers to liver-like consistency of the affected lobe on cut section.
The affected lobe is red, firm and consolidated. The cut surface of the involved lobe is airless, red-pink, dry, granular and has liver-like consistency.
Microscopic Examination
i) The oedema fluid of the preceding stage is replaced by strands of fibrin.
ii) There is marked cellular exudate of neutrophils and extravasation of red cells.
iii) Many neutrophils show ingested bacteria.
iv) The alveolar septa are less prominent than in the first stage due to cellular exudation.
3. GREY HEPATISATION: LATE CONSOLIDATION This phase lasts for4 to 8 days.
The affected lobe Is firm and heavy. The cut surface is dry, granular and grey in appearance with liver-like consistency. The change in colour from red to grey begins at the hilum and spreads towards the periphery. Fibrinous pleurisy is prominent.
Microscopic Examination
i) The fibrin strands are dense and more numerous.
ii) The cellular exudate of neutrophils is reduced due to disintegration of many inflammatory cells. The red cells are also fewer. The macrophages begin to appear in the exudate.
iii) The cellular exudate is often separated from the septal walls by a thin clear space.
iv) The organisms are less numerous and appear as degenerated forms.
COMPLICATIONS. Since the advent of antibiotics, serious complications of lobar pneumonia are uncommon. However, they may develop in neglected cases and in patients with impaired immunologic defenses.
These are as under:
1. Organisation. In about 3% of cases, resolution of the exudate does not occur but instead it is organised. There is ingrowth of fibroblasts from the alveolar septa resulting in fibrosed, tough, airless leathery lung tissue.
2. Pleural effusion. About 5% of treated cases of lobar pneumonia develop inflammation of the pleura with effusion.
3. Empyema. Less than 1% of treated cases of lobar pneumonia develop encysted pus in the pleural cavity termed empyema.
4. Lung abscess. A rare complication of lobar pneumonia is formation of lung abscess.
5. Metastatic infection. Occasionally, infection in the lungs and pleural cavity in lobar pneumonia may extend into the pericardium and the heart causing purulent pericarditis, bacterial endocarditis and myocarditis.
CLINICAL FEATURES. The major symptoms are: shaking chills, fever, malaise with pleuritic chest pain, dyspnoea and cough with expectoration which may be mucoid, purulent or even bloody. The common physical findings are fever, tachycardia, and tachypnoea, and sometimes cyanosis if the patient is severely hypoxaemic. There is generally a marked neutrophilic leucocytosis. Blood cultures are positive in about 30% of cases. Chest radiograph may reveal consolidation.
II. Bronchopneumonia (Lobular Pneumonia)
Bronchopneumonia or lobular pneumonia is infection of the terminal bronchioles that extends into the surrounding alveoli resulting in patchy consolidation of the lung. The condition is particularly frequent at extremes of life (i.e. in infancy and old age), as a terminal event in chronic debilitating diseases and as a secondary infection following viral respiratory infections such as influenza, measles etc,
ETIOLOGY.
The common organisms responsible for bronchopneumonia are staphylococci, streptococci, pneumococci, Klebsiella pneumoniae, Haemophilus influenzae, and gram-negative bacilli like Pseudomonas and coliform bacteria.
Bronchopneumonia is identified by patchy areas of red or grey consolidation affecting one or more lobes, frequently found bilaterally and more often involving the lower zones of the lungs due to gravitation of the secretions. On cut surface, these patchy consolidated lesions are dry, granular, firm, red or grey in colour, 3 to 4 cm in diameter, slightly elevated over the surface and are often centred around a bronchiole. These patchy areas are best picked up by passing the fingertips on the cut surface.
Microscopic Examination
i) Acute bronchiolitis, ii) Suppurative exudate, consisting chiefly of neutrophils, in the peribronchiolar alveoli, iii) Thickening of the alveolar septa by congested capillaries and leucocytic infiltration, iv) Less involved alveoli contain oedema fluid.
COMPLICATIONS.
The complications of lobar pneumonia may occur in bronchopneumonia as well. However, complete resolution of bronchopneumonia is uncommon. There is generally some degree of destruction of the bronchioles resulting in foci of bronchiolar fibrosis that may eventually cause bronchiectasis.
CLINICAL FEATURES. The patients of bronchopneumonia are generally infants or elderly individuals. There may be history of preceding bed-ridden illness, chronic debility, aspiration of gastric contents or upper respiratory infection.
VIRAL AND MYCOPLASMAL PNEUMONIA (PRIMARY ATYPICAL PNEUMONIA)
Viral and mycoplasmal pneumonia is characterised by patchy inflammatory changes, largely confined to interstitial tissue of the lungs, without any alveolar exudate. Other terms used for these respiratory tract infections are interstitial pneumonitis, reflecting the interstitial location of the inflammation, andprimary atypical pneumonia, atypicality being the absence of alveolar exudate commonly present in other pneumonias. Interstitial pneumonitis may occur in all ages.
ETIOLOGY. Interstitial pneumonitis is caused by a wide variety of agents, the most common being respiratory syncytial virus (RSV). Others are Mycoplasma pneumoniae and many viruses such as influenza and parainfluenza viruses, adenoviruses, rhinoviruses, coxsackieviruses and cytomegaloviruses (CMV).
Depending upon the severity of infection, the involvement may be patchy to massive and widespread consolidation of one or both the lungs. The lungs are heavy, congested and subcrepitant. Sectioned surface of the lung exudes small amount of frothy or bloody fluid.
Microscopic Examination
I) Interstitial Inflammation: There is thickening of alveolar walls due to congestion, oedema and mononuclear inflammatory infiltrate comprised by lymphocytes, macrophages and some plasma cells. illness, chronic debility, aspiration of gastric contents or upper respiratory infection.
ii) Necrotising bronchiolitis: This is characterised by foci of necrosis of the bronchiolar epithelium, inspissated secretions in the lumina and mononuclear infiltrate in the walls and lumina.
iii) Reactive changes: The lining epithelial cells of the bronchioles and alveoli proliferate in the presence of virus and may form multinucleate giant cells and syncytia in the bronchiolar and alveolar walls.
iv) Alveolar changes: In severe cases, the alveolar lumina may contain oedema fluid, fibrin, scanty inflammatory exudate and coating of alveolar walls by pink, hyaline membrane similar to the one seen in respiratory distress syndrome.
COMPLICATIONS.
The major complication of interstitial pneumonitis is superimposed bacterial infection and its complications. Most cases of interstitial pneumonitis recover completely.
CLINICAL FEATURES.
Majority of cases of interstitial pneumonitis initially have upper respiratory symptoms with fever, headache and muscle-aches. A few days later appears dry, hacking, non-productive cough with retrosternal burning due to tracheitis and bronchitis. Chest radiograph may show patchy or diffuse consolidation.
C. OTHERTYPES OF PNEUMONIAS
I. Pneumocystis carinii Pneumonia
Pneumocystis carinii, a protozoon widespread in the environment, causes pneumonia by inhalation of the organisms as an opportunistic infection in neonates and immunosuppressed people. Almost 100% cases of AIDS develop opportunistic infection, most commonly Pneumocystis carinii pneumonia.
II. Legionella Pneumonia
Legionella pneumonia or legionnaire's disease is an epidemic illness caused by gramnegative bacilli, Legionella pneumophila that thrives in aquatic environment. It was first recognised following investigation into high mortality among those attending American Legion Convention in Philadelphia in July 1976. The epidemic occurs in summer months by spread of organisms through contaminated drinking water or in air-conditioning cooling towers. Impaired host defenses in the form of immunodeficiency, corticosteroid therapy, old age and cigarette smoking play important roles.
III. Aspiration (Inhalation) Pneumonia
Aspiration or inhalation pneumonia results from inhaling different agents into the lungs. These substances include food, gastric contents, foreign body and infected material from oral cavity. A number of factors predispose to inhalation pneumonia which include: unconsciousness, drunkenness, neurological disorders affecting swallowing, drowning, necrotic oropharyngeal tumours, in premature infants and congenital tracheo-oesophageal fistula.
1. Aspiration of small amount of sterile foreign matter such as acidic gastric contents produce chemical pneumonitis. It is characterised by haemorrhagic pulmonary oedema with presence of particles in the bronchioles.
2. Non-sterile aspirate causes widespread bronchopneumonia with multiple areas of necrosis and suppuration.
IV. Hypostatic Pneumonia
Hypostatic pneumonia is the term used for collection of oedema fluid and secretions in the dependent parts of the lungs in severely debilitated, bedridden patients. The accumulated fluid in the basal zone and posterior part of lungs gets infected by bacteria from the upper respiratory tract and sets in bacterial pneumonia.
V. Lipid Pneumonia Another variety of noninfective pneumonia is lipid pneumonia. It is of 2 types:
1. Exogenous lipid pneumonia. This is caused by aspiration of a variety of oily materials. These are: inhalation of oily nasal drops, regurgitation of oily medicines from stomach (e.g. liquid paraffin), administration of oily vitamin preparation to reluctant children or to debilitated old patients.
2. Endogenous lipid pneumonia. Endogenous origin of lipids causing pneumonic consolidation is more common. The sources of origin are tissue breakdown following obstruction to airways e.g. obstruction by bronchogenic cancer, tuberculosis and bronchiectasis.
Abnormalities in chromosome number
Trisomy 21 (Down syndrome)
(1) The most common chromosomal disorder.
(2) A disorder affecting autosomes. It is generally caused by meiotic nondisjunction in the mother, which results in an extra copy of chromosome 21 or trisomy 21.
(3) Risk increases with maternal age.
(4) Clinical findings include mental retardation and congenital heart defects. There is also an increased risk of developing acute leukemia
and an increased susceptibility to severe infections.
(5) Oral findings include macroglossia, delayed eruption of teeth, and hypodontia.
Trisomies 18 and 13
(1) Trisomy 18 (Edwards syndrome):
characterized by an extra copy of chromosome 18. Oral findings include micrognathia.
(2) Trisomy 13 (Patau’s syndrome): characterized by an extra copy of chromosome 13. Oral findings include cleft lip and palate.
(3) Meiotic nondisjunction is usually the cause of an extra chromosome in both of these trisomies.
(4) Clinical findings for both of these trisomies are usually more severe than trisomy 21. Most children with these diseases die within months after being born due to manifestations such as congenital heart disease.
Klinefelter’s syndrome
(1) One of the most common causes of male hypogonadism.
(2) Characterized by two or more X chromosomes and one or more Y chromosomes. Typically, there are 47 chromosomes with the karyotype of XXY.
(3) The cause is usually from meiotic nondisjunction.
(4) Clinical findings include atrophic and underdeveloped testes, gynecomastia, tall stature, and a lower IQ.
Turner’s syndrome
(1) One of the most important causes of amenorrhea.
(2) Characterized by having only one X chromosome, with a total of 45 chromosomes and a karyotype of XO.
(3) Clinical findings include underdeveloped female genitalia, short stature, webbed neck, and amenorrhea. Affected females are usually
sterile. Unlike other chromosomal disorders, this one is usually not complicated by mental retardation.
Treacher Collins syndrome (mandibulofacial dysostosis)
(1) Genetic transmission: autosomal dominant.
(2) A relatively rare disease that results from abnormal development of derivatives from the first and second branchial arches.
(3) Clinical findings include underdeveloped zygomas and mandible and deformed ears. Oral findings include cleft palate and small or absent parotid glands.
Osteoporosis
is characterized by increased porosity of the skeleton resulting from reduced bone mass. The disorder may be localized to a certain bone (s), as in disuse osteoporosis of a limb, or generalized involving the entire skeleton. Generalized osteoporosis may be primary, or secondary
Primary generalized osteoporosis
• Postmenopausal
• Senile
Secondary generalized osteoporosis
A. Endocrine disorders
• Hyperparathyroidism
• Hypo or hyperthyroidism
• Others
B. Neoplasia
• Multiple myeloma
• Carcinomatosis
C. Gastrointestinal disorders
• Malnutrition & malabsorption
• Vit D & C deficiency
• Hepatic insufficiency
D. Drugs
• Corticosteroids
• Anticoagulants
• Chemotherapy
• Alcohol
E. Miscellaneous
• osteogenesis imperfecta
• immobilization
• pulmonary disease
Senile and postmenopausal osteoporosis are the most common forms. In the fourth decade in both sexes, bone resorption begins to overrun bone deposition. Such losses generally occur in areas containing abundant cancelloues bone such as the vertebrae & femoral neck. The postmenopausal state accelerates the rate of loss; that is why females are more susceptible to osteoporosis and its complications.
Gross features
• Because of bone loss, the bony trabeculae are thinner and more widely separated than usual. This leads to obvious porosity of otherwise spongy cancellous bones
Microscopic features
• There is thinning of the trabeculae and widening of Haversian canals.
• The mineral content of the thinned bone is normal, and thus there is no alteration in the ratio of minerals to protein matrix
Etiology & Pathogenesis
• Osteoporosis involves an imbalance of bone formation, bone resorption, & regulation of osteoclast activation. It occurs when the balance tilts in favor of resorption.
• Osteoclasts (as macrophages) bear receptors (called RANK receptors) that when stimulated activate the nuclear factor (NFκB) transcriptional pathway. RANK ligand synthesized by bone stromal cells and osteoblasts activates RANK. RANK activation converts macrophages into bone-crunching osteoclasts and is therefore a major stimulus for bone resorption.
• Osteoprotegerin (OPG) is a receptor secreted by osteoblasts and stromal cells, which can bind RANK ligand and by doing so makes the ligand unavailable to activate RANK, thus limiting osteoclast bone-resorbing activity.
• Dysregulation of RANK, RANK ligand, and OPG interactions seems to be a major contributor in the pathogenesis of osteoporosis. Such dysregulation can occur for a variety of reasons, including aging and estrogen deficiency.
• Influence of age: with increasing age, osteoblasts synthetic activity of bone matrix progressively diminished in the face of fully active osteoclasts.
• The hypoestrogenic effects: the decline in estrogen levels associated with menopause correlates with an annual decline of as much as 2% of cortical bone and 9% of cancellous bone. The hypoestrogenic effects are attributable in part to augmented cytokine production (especially interleukin-1 and TNF). These translate into increased RANK-RANK ligand activity and diminished OPG.
• Physical activity: reduced physical activity increases bone loss. This effect is obvious in an immobilized limb, but also occurs diffusely with decreased physical activity in older individuals.
• Genetic factors: these influence vitamin D receptors efficiency, calcium uptake, or PTH synthesis and responses.
• Calcium nutritional insufficiency: the majority of adolescent girls (but not boys) have insufficient dietary intake of calcium. As a result, they do not achieve the maximal peak bone mass, and are therefore likely to develop clinically significant osteoporosis at an earlier age.
• Secondary causes of osteoporosis: these include prolonged glucocorticoid therapy (increases bone resorption and reduce bone synthesis.)
The clinical outcome of osteoporosis depends on which bones are involved. Thoracic and lumbar vertebral fractures are extremely common, and produce loss of height and various deformities, including kyphoscoliosis that can compromise respiratory function. Pulmonary embolism and pneumonia are common complications of fractures of the femoral neck, pelvis, or spine.
Cholelithiasis (Biliary calculi)
- These are insoluble material found within the biliary tract and are formed of bile constituents (cholesterol, bile pigments and calcium salts).
Sites: - -Gall bladder, extra hepatic biliary tract. Rarely, intrahepatic biliary tract.
Predisposing factors:-
- Change in the composition of bile. - It is the disturbance of the ratio between cholesterol and lecithin or bile salts which may be due to Hypercholesterolaemia which may be hereditary or the 4 F (Female, Forty, Fatty, Fertile). Drugs as clofibrate and exogenous estrogen. High intake of calories (obesity).
Increased concentration of bilirubin in bile- pigment stones
Hypercalcaemia:- Calcium carbonate stones.
2- Staisis.
3- Infection.
Pathogenesis i- Nucleation or initiation of stone formation:- The nidus may be cholesterol “due to supersaturation” Bacteria, parasite
RBCs or mucous.
ii- Acceleration:- When the stone remains in the gall bladder, other constituents are added to the
nidus to form the stone.
Complications of gall stones:-
- Predispose to infection.- Chronic irritation leading to
a. Ulceration b. Squamous metaplasia & carcinoma.
Congenital heart defect
Congenital heart defects can be broadly categorised into two groups,
o acyanotic heart defects ('pink' babies) :
An acyanotic heart defect is any heart defect of a group of structural congenital heart defects, approximately 75% of all congenital heart defects.
It can be subdivided into two groups depending on whether there is shunting of the blood from the left vasculature to the right (left to right shunt) or no shunting at all.
Left to right shunting heart defects include
- ventricular septal defect or VSD (30% of all congenital heart defects),
- persistent ductus arteriosus or PDA,
- atrial septal defect or ASD,
- atrioventricular septal defect or AVSD.
Acyanotic heart defects without shunting include
- pulmonary stenosis, a narrowing of the pulmonary valve,
- aortic stenosis
- coarctation of the aorta.
cyanotic heart defects ('blue' babies).
obstructive heart defects
cyanotic heart defect is a group-type of congenital heart defect. These defects account for about 25% of all congenital heart defects. The patient appears blue, or cyanotic, due to deoxygenated blood in the systemic circulation. This occurs due to either a right to left or a bidirectional shunt, allowing significant proportions of the blood to bypass the pulmonary vascular bed; or lack of normal shunting, preventing oxygenated blood from exiting the cardiac-pulmonary system (as with transposition of the great arteries).
Defects in this group include
hypoplastic left heart syndrome,
tetralogy of Fallot,
transposition of the great arteries,
tricuspid atresia,
pulmonary atresia,
persistent truncus arteriosus.
Diseases from Str. pyogenes (Group A strep)
1. Streptococcal pharyngitis. Most frequent Group A infection. Throat has gray-white exudate. Infection may become systemic into blood, sinuses, jugular vein, meninges. In less than a week the M-protein and capsule production decrease, and transmission declines.
2. Skin infections, such as impetigo. Especially in children. Different M-proteins than in pharyngitis. Skin infections associated with edema and red streaking (characteristic).
3. Necrotizing fasciitis/myositis. Infection of deeper tissue advances despite antibiotics.
4. Scarlet fever. Caused by phage-associated erythrogenic toxin-producing strains. Toxins cause cardiac, renal, and other systemic failures. Rash is very red with a sand-papery feel and shedding of superficial skin.
5. Toxic Shock Syndrome. Parallels the toxic shock caused by TSST-carrying Staph. aureus.
6. Non-suppurative, post-infection diseases.
Rheumatic fever (myocarditis, cardiac valve disease, polyarthralgia, rashes. Occurs two weeks after a pharyngeal infection)
Glomerulonephritis (Occurs two weeks after pharyngeal or skin infections. Often due to immunologic reaction to M-protein type 12)
Congestive heart failure (CHF)
A. Left-sided CHF
1. May result from nearly any heart disease affecting the left ventricle (e.g., ischemic heart disease, hypertension, valvular disease).
2. Common signs and symptoms include:
a. Dyspnea (shortness of breath) exacerbated by exertion.
b. Paroxysmal nocturnal dyspnea.
c. Orthopnea.
d. Tachypnea.
e. Pleural effusion.
f. Consequences include pulmonary edema.
B. Right-sided CHF
1. The most common cause of right heart failure is left heart failure. It uncommonly occurs in isolation. Other causes include left-sided lesions (mitral stenosis), pulmonary hypertension, cardiomyopathy, and tricuspid or pulmonary valvular disease.
2. Frequently presents with peripheral edema, especially in the ankles and feet (i.e., dependent edema), enlarged liver or spleen, and distention of the neck veins.