Talk to us?

General Pathology - NEETMDS- courses
NEET MDS Lessons
General Pathology

Iron deficiency anaemia.

Absorption of iron is affected by :
- Iron stores.
- Rate of erythropoiesis
- Acid pH aids absorption.
- Phosphates and phytates in diet impair absorption.

Causes  of deficiency:

- Increased demand:
o    Growth (in children)
o    Menstruation, Pregnancy, lactation.
- Inadequate intake and absorption.
o    Dietary deficiency.
o    Achlorhydria or gastrectomy.
o    Malabsorption states.

- Chronic blood loss
o    Peptic ulcer, bleeding piles
o    Menorrhagia.
o    Hook worm infestation

Features:
- Anaemia.
- Koilonychia.
- Atrophic glossitis and angular stomatitis.
- Dysphagia-Plummer Vinson syndrome.

Blood findings:

- Microcytjc_hypochromic cells, ring cells and pessary cells.
- Anisocytosis and poikilocytosis.
- Low MCV. MCH and MCHC.
- Serum iron is low but iron binding capacity is increased

Bone marrow

Erythroid hyperplasia with imcronormoblasts. Iron stains reveal depleted stores


Differential  diagnosis .-

- Sideroblastic anaemia which is also microcytic hypochromic  but there is excess iron in the erythroid cells .Some are pyridoxine responsive.
- (ii) Thalassaemia
 

Keloids
1. Characterized by a progressively enlarging scar.
2. Caused by an abnormal accumulation of collagen at the site of injury.
3. More common in African-Americans.

Chemical Mediators In Inflammation

Can be classified as :

A. Neurogenic

Also called the Triple Response of Lewis. It involves neurogenic vasodilatation of arterioles due to antidromic axon reflex arc. The constituents of the response are:

1. arteriolar vasoconstriction followed by

2. arteriolar vasodilatation

3. swelling

B. Chemical

1. Amines: Histamine and 5 hydroxytryptamine. Released  from platelets and mast cells.

Actions: Immediate and short lived.

Dilatation of arterioles.

Increased capillary premeability.

Kinins: Bradykinin and kallidin These are present in inactive from and are  activated by kinin forming proteases

Actions:

Arteriolar dilatation.

Increased vascular permeability

Pain

Kinin forming proteases Plasmin and Kallikrein. Present as inactive precursors.

Cleavage products of complement C3a und C5a are called anaphylatoxins

Actions:

Histamine release from mast cells

Chemotaxis (also C567 )

Enhance phagocytosis.

 Polymorph components

Cationic: proteins which cause

Increased permeability

Histamine release.

Chemotaxis of monocytes

Neutral proteases which:

Cleave C3 and C5 to active form

Convert Kininogen to Kinin

Increase permeability.

Acid proteases which liberate leucokinins

Slow reacting. substance of anaphylaxis: (SRS-A) is a lipid released from mast cell.

Action --Increases vascular permeability

Prostaglandins: E1 + E2 .

Platelets are rich source

Action:

Platelets are a rich source.

Vasodilatation.

Increased permeability.

Pain.

VIII. Miscellaneous: like

Tissue lactic acid.

 Bacterial toxins.

Osteoporosis
 
is characterized by increased porosity of the skeleton resulting from reduced bone mass. The disorder may be localized to a certain bone (s), as in disuse osteoporosis of a limb, or generalized involving the entire skeleton. Generalized osteoporosis may be primary, or secondary


Primary generalized osteoporosis
• Postmenopausal
• Senile
Secondary generalized osteoporosis

A. Endocrine disorders
• Hyperparathyroidism
• Hypo or hyperthyroidism
• Others

B. Neoplasia
• Multiple myeloma
• Carcinomatosis 

C. Gastrointestinal disorders
• Malnutrition & malabsorption
• Vit D & C deficiency
• Hepatic insufficiency 

D. Drugs
• Corticosteroids
• Anticoagulants
• Chemotherapy
• Alcohol 

E. Miscellaneous
• osteogenesis imperfecta
• immobilization
• pulmonary disease 

Senile and postmenopausal osteoporosis are the most common forms. In the fourth decade in both sexes, bone resorption begins to overrun bone deposition. Such losses generally occur in areas containing abundant cancelloues bone such as the vertebrae & femoral neck. The postmenopausal state accelerates the rate of loss; that is why females are more susceptible to osteoporosis and its complications. 

Gross features
• Because of bone loss, the bony trabeculae are thinner and more widely separated than usual. This leads to obvious porosity of otherwise spongy cancellous bones

Microscopic features
• There is thinning of the trabeculae and widening of Haversian canals.
• The mineral content of the thinned bone is normal, and thus there is no alteration in the ratio of minerals to protein matrix

Etiology & Pathogenesis

• Osteoporosis involves an imbalance of bone formation, bone resorption, & regulation of osteoclast activation. It occurs when the balance tilts in favor of resorption.
• Osteoclasts (as macrophages) bear receptors (called RANK receptors) that when stimulated activate the nuclear factor (NFκB) transcriptional pathway. RANK ligand synthesized by bone stromal cells and osteoblasts activates RANK. RANK activation converts macrophages into bone-crunching osteoclasts and is therefore a major stimulus for bone resorption.
• Osteoprotegerin (OPG) is a receptor secreted by osteoblasts and stromal cells, which can bind RANK ligand and by doing so makes the ligand unavailable to activate RANK, thus limiting osteoclast bone-resorbing activity.
• Dysregulation of RANK, RANK ligand, and OPG interactions seems to be a major contributor in the pathogenesis of osteoporosis. Such dysregulation can occur for a variety of reasons, including aging and estrogen deficiency.
• Influence of age: with increasing age, osteoblasts synthetic activity of bone matrix progressively diminished in the face of fully active osteoclasts.
• The hypoestrogenic effects: the decline in estrogen levels associated with menopause correlates with an annual decline of as much as 2% of cortical bone and 9% of cancellous bone. The hypoestrogenic effects are attributable in part to augmented cytokine production (especially interleukin-1 and TNF). These translate into increased RANK-RANK ligand activity and diminished OPG.
• Physical activity: reduced physical activity increases bone loss. This effect is obvious in an immobilized limb, but also occurs diffusely with decreased physical activity in older individuals.
• Genetic factors: these influence vitamin D receptors efficiency, calcium uptake, or PTH synthesis and responses.
• Calcium nutritional insufficiency: the majority of adolescent girls (but not boys) have insufficient dietary intake of calcium. As a result, they do not achieve the maximal peak bone mass, and are therefore likely to develop clinically significant osteoporosis at an earlier age.
• Secondary causes of osteoporosis: these include prolonged glucocorticoid therapy (increases bone resorption and reduce bone synthesis.)
The clinical outcome of osteoporosis depends on which bones are involved. Thoracic and lumbar vertebral fractures are extremely common, and produce loss of height and various deformities, including kyphoscoliosis that can compromise respiratory function. Pulmonary embolism and pneumonia are common complications of fractures of the femoral neck, pelvis, or spine. 

Fulminant hepatitis

Fulminant hepatitis leads to submassive and massive hepatic necrosis. 
a. Etiology. HAV, HBV, HCV, delta virus (HDV) superinfection, HEV, chloroform, carbon tetrachloride, isoniazid, halothane, and other drugs (acetaminophen overdose) all may cause fulminant hepatitis.
b. Clinical features include progressive hepatic dysfunction with a mortality of 25%-90%.
c. Pathology

(1) Grossly, one sees progressive shrinkage of the liver as the parenchyma is destroyed. 

Neutropenia: Neutropenia is an abnormally low number of neutrophils  
Causes

-Typhoid, paratyphoid. .
-Viral and ricketseal infections.
-Malaria, Kala azar.
-Hypersplenism.
-Aplastic and megaloblastic anaemia.
-Marrow infiltration by malignancies, lymphomas etc.
-SLE.

SPIROCHETAL DISEASE

Syphilis

A contagious systemic disease caused by the spirochete Treponema pallidum, characterized by sequential clinical stages and by years of latency.

ACQUIRED SYPHILIS

T. pallidum is a delicate spiral organism about 0.25 µm wide and from 5 to 20 µm long, identified by characteristic morphology and motility with a darkfield microscope or fluorescent techniques

In acquired syphilis, T. pallidum enters through the mucous membranes or skin, reaches the regional lymph nodes within hours, and rapidly disseminates throughout the body. In all stages of disease, perivascular infiltration of lymphocytes, plasma cells, and, later, fibroblasts causes swelling and proliferation of the endothelium of the smaller blood vessels, leading to endarteritis obliterans.

In late syphilis, T. pallidum elicits a granulomatous-like (gummatous) reaction causing masses, ulcerations, and necrosis. Inflammation may subside despite progressive damage, especially in the cardiovascular and central nervous systems.

The CNS is invaded early in the infection. During the secondary stage of the disease, > 30% of patients have abnormal CSF and may have symptoms of meningitis

Symptoms, Signs, and Course

The incubation period of primary syphilis can vary from 1 to 13 wk but is usually from 3 to 4 wk. The disease may present at any stage and long after the initial infection

Primary stage: The primary lesion, or chancre generally evolves and heals within 4 to 8 wk in untreated patients. After inoculation, a red papule quickly erodes to form a painless ulcer with an indurated base that, when abraded, exudes a clear serum containing numerous spirochetes

The regional lymph nodes usually enlarge painlessly and are firm, discrete, and nontender. Chancres occur on the penis, anus, and rectum in men and on the vulva, cervix, and perineum in women. Chancres may also occur on the lips or the oropharyngeal or anogenital mucous membranes.

Secondary stage: Cutaneous rashes usually appear within 6 to 12 wk after infection and are most florid after 3 to 4 mo.

Frequently, generalized, nontender, firm, discrete lymphadenopathy and hepatosplenomegaly are palpable. Over 80% of patients have mucocutaneous lesions, 50% have generalized lymphadenopathy, and about 10% have lesions of the eyes (uveitis), bones (periostitis), joints, meninges, kidneys (glomerulitis), liver, and spleen.

Acute syphilitic meningitis may develop, with headache, neck stiffness, cranial nerve lesions, deafness, and, occasionally, papilledema.

Condyloma lata--hypertrophic, flattened, dull pink or gray papules at the mucocutaneous junctions and in moist areas of the skin--are extremely infectious. Hair often falls out in patches, leaving a moth-eaten appearance (alopecia areata).

Latent stage

In the early latent period (< 2 yr after infection), infectious mucocutaneous relapses may occur, but after 2 yr contagious lesions rarely develop, and the patient appears normal. About 1/3 of untreated persons develop late syphilis

Late or tertiary stage: Lesions may be clinically described as (1) benign tertiary syphilis of the skin, bone, and viscera, (2) cardiovascular syphilis, or (3) neurosyphilis.

The typical lesion is a gumma, an inflammatory mass that evolves to necrosis and fibrosis and that is frequently localized but may diffusely infiltrate an organ or tissue

Benign tertiary syphilis of the bones results in either periostitis with bone formation or osteitis with destructive lesions causing a deep, boring pain, characteristically worse at night. A lump or swelling may be palpable.

Cardiovascular syphilis: A dilated, usually fusiform aneurysm of the ascending or transverse aorta, narrowing of the coronary ostia, or aortic valvular insufficiency usually appears 10 to 25 yr after the initial infection

Neurosyphilis

In meningovascular neurosyphilis, brain involvement is signaled by headache, dizziness, poor concentration, lassitude, insomnia, neck stiffness, and blurred vision. Mental confusion, epileptiform attacks, papilledema, aphasia, and mono- or hemiplegia may also occur

Diagnosis:

Two classes of serologic tests for syphilis (STS) aid in diagnosing syphilis and other related treponemal diseases: screening, nontreponemal tests using lipoid antigens detect syphilitic reagin and include the Venereal Disease Research Laboratory (VDRL) and the rapid plasma reagin (RPR) tests. Specific treponemal tests detect antitreponemal antibodies and include fluorescent treponemal antibody absorption (FTA-ABS) test, microhemagglutination assay for antibodies to T. pallidum (MHA-TP), and Treponema pallidum hemagglutination assay (TPHA).

In darkfield microscopy, light is directed obliquely through the slide so that rays striking the spirochetes cause them to appear as bright, motile, narrow coils against a dark background

Explore by Exams