Talk to us?

- NEETMDS- courses
NEET MDS Lessons
General Pathology

Abnormalities in chromosome number
Trisomy 21 (Down syndrome)
(1) The most common chromosomal disorder.
(2) A disorder affecting autosomes. It is generally caused by meiotic nondisjunction in the mother, which results in an extra copy of chromosome 21 or trisomy 21.
(3) Risk increases with maternal age.
(4) Clinical findings include mental retardation and congenital heart defects. There is also an increased risk of developing acute leukemia
and an increased susceptibility to severe infections.
(5) Oral findings include macroglossia, delayed eruption of teeth, and hypodontia.

Trisomies 18 and 13
(1) Trisomy 18 (Edwards syndrome):
characterized by an extra copy of chromosome 18. Oral findings include micrognathia.
(2) Trisomy 13 (Patau’s syndrome): characterized by an extra copy of chromosome 13. Oral findings include cleft lip and palate.
(3) Meiotic nondisjunction is usually the cause of an extra chromosome in both of these trisomies.
(4) Clinical findings for both of these trisomies are usually more severe than trisomy 21. Most children with these diseases die within months after being born due to manifestations such as congenital heart disease.

Klinefelter’s syndrome
(1) One of the most common causes of male hypogonadism.
(2) Characterized by two or more X chromosomes and one or more Y chromosomes. Typically, there are 47  chromosomes with the karyotype of XXY.
(3) The cause is usually from meiotic nondisjunction.
(4) Clinical findings include atrophic and underdeveloped testes, gynecomastia, tall stature, and a lower IQ.

Turner’s syndrome
(1) One of the most important causes of amenorrhea.
(2) Characterized by having only one X chromosome, with a total of 45 chromosomes and a karyotype of XO.
(3) Clinical findings include underdeveloped female genitalia, short stature, webbed neck, and amenorrhea. Affected females are usually
sterile. Unlike other chromosomal disorders, this one is usually not complicated by mental retardation.

Treacher Collins syndrome (mandibulofacial dysostosis)
(1) Genetic transmission: autosomal dominant.
(2) A relatively rare disease that results from abnormal development of derivatives from the first and second branchial arches.
(3) Clinical findings include underdeveloped zygomas and mandible and deformed ears. Oral findings include cleft palate and small or absent parotid glands.

Urinary tract infection
Most often caused by gram-negative, rod-shaped bacteria that are normal residents of the enteric tract, especially Escherichia coli.

Clinical manifestations: 

frequent urination, dysuria, pyuria (increased PMNs), hematuria, and bacteriuria.

May lead to infection of the urinary bladder (cystitis) or kidney (pyelonephritis).

Bacterial endocarditis 
Endocarditis is an infection of the endocardium of the heart, most often affecting the heart valves.

A. Acute endocarditis
1. Most commonly caused by Staphylococcus aureus.
2. It occurs most frequently in intravenous drug users, where it usually affects the tricuspid valve. 

B. Subacute endocarditis

1. Most commonly caused by less virulent organisms, such as intraoral Streptococcus viridans that can be introduced systemically via dental procedures.
2. Pathogenesis: occurs when a thrombus or vegetation forms on a previously damaged or congenitally abnormal valve. These vegetations contain bacteria and inflammatory cells. Complications can arise if the thrombus embolizes, causing septic infarcts.
Other complications include valvular dysfunction or abscess formation.
3. Symptoms can remain hidden for months.
4. Valves affected (listed most to least common):
a. Mitral valve (most frequent).
b. Aortic valve.
c. Tricuspid (except in IV drug users, where the tricuspid valve is most often affected).

Miscellaneous Bone Tumors 

1. Ewing Sarcoma & Primitive Neuroectodermal Tumor (PNET) are primary malignant small round-cell tumors of bone and soft tissue. They are viewed as the same tumor because they share an identical chromosome translocation; they differ only in degree of differentiation. PNETs demonstrate neural differentiation whereas Ewing sarcomas are undifferentiated. After osteosarcomas, they are the second most common pediatric bone sarcomas. Most patients are 10 to 15 years old. The common chromosomal abnormality is a translocation that causes fusion of the EWS gene with a member of the ETS family of transcription factors. The resulting hybrid protein functions as an active transcription factor to stimulate cell proliferation. These translocations are of diagnostic importance since almost all patients with Ewing tumor have t(11;22).

Pathological features

• Ewing sarcoma and PNETs arise in the medullary cavity but eventually invade the cortex and periosteum to produce a soft tissue mass.
• The tumor is tan-white, frequently with foci of hemorrhage and necrosis.

Microscopic features

• There are sheets of uniform small, round cells that are slightly larger than lymphocytes with few mitoses and little intervening stroma.
• The cells have scant glycogen-rich cytoplasm.
• The presence of Homer-Wright rosettes (tumor cells circled about a central fibrillary space) indicates neural differentiation, and hence indicates by definition PNET. 

Ewing sarcoma and PNETs typically present as painful enlarging masses in the diaphyses of long tubular bones (especially the femur) and the pelvic flat bones. The tumor may be confused with osteomyelitis because of its association with systemic signs & symptoms of infection. X-rays show a destructive lytic tumor with infiltrative margins and extension into surrounding soft tissues. There is a characteristic periosteal reaction depositing bone in an onionskin fashion. 

2. Giant-Cell Tumor of Bone (GCT) is dominated by multinucleated osteoclast-type giant cells, hence the synonym osteoclastoma. GCT is benign but locally aggressive, usually arising in individuals in their 20s to 40s. Current opinion suggests that the giant cell component is likely a reactive macrophage population and the mononuclear cells are neoplastic. Tumors are large and red-brown with frequent cystic degeneration. They are composed of uniform oval mononuclear cells with frequent mitoses, with scattered osteoclast-type giant cells that may contain 30 or more nuclei.

The majority of GCTs arise in the epiphysis of long bones around the knee (distal femur and proximal tibia).
Radiographically, GCTs are large, purely lytic, and eccentric; the overlying cortex is frequently destroyed, producing a bulging soft tissue mass with a thin shell of reactive bone. Although GCTs are benign, roughly 50% recur after simple curettage; some malignant examples (5%) metastasize to the lungs 

INFLAMMATION

Response of living tissue to injury, involving neural, vascular and cellular response.

ACUTE INFLAMMATION

It involves the formation of a protein .rich and cellullar exudate and the cardinal signs are calor, dolor, tumour, rubor and function loss

 

The basic components of the response are

Haemodynamic changes.

Permeability changes

Leucocyte events.

1. Haemodynamic Changes :

  • Transient vasoconstriction followed by dilatation.
  • Increased blood flow in arterioles.
  • More open capillary bed.
  • Venous engorgement and congestion.
  • Packing of microvasculature by RBC (due to fluid out-pouring)
  • Vascular stasis.
  • Change in axial flow (resulting in margination of leucocytes)

.2. Permeability Changes:

Causes.

  • Increased intravascular hydrostatic pressure.
  • Breakdown of tissue proteins into small molecules resulting in
  • increased tissue osmotic pressure.
  • Increased permeability due to chemical mediators, causing an
  • immediate transient response. .
  • Sustained response due to direct damage to microcirculation.

3. White Cell Events:

.Margination - due to vascular stasis and change in axial flow.

Pavementing - due to endothelial cells swollen and more sticky.

Leucocytes more adhesive.

Binding by a plasma component

Emigration - of leucocytes by amoeboid movement between endhothe1ial cells and beyond the basement membrane. The passive movement of RBCs through the gaps created during emigration is called diapedesis

Chemotaxis - This is a directional movement, especially of polymorphs and monocytes towards a concentration gradient resulting in aggregation of these cells at the site of inflammation. .Chemotactic agents may be:

  • Complement components. (C3and C5  fragments and C567)
  • Bacterial products.
  • Immune complexes, especially for monocyte.
  • Lymphocytic factor, especially for monocyte.

 Phagocytosis - This includes recognition, engulfment and intracellular degradation. It is aided by .Opsonins., Specific antibodies., Surface provided by fibrin meshwork.

Functions of the fluid and cellular exudate

1. Dilution of toxic agent.

2. Delivers serum factors like antibodies and complement components to site of inflammation.

3. Fibrin formed aids In :

  • Limiting inflammation
  • Surface phagocytosis
  • Framework for repair.

4. Cells of the exudate:

Phagocytose and destroy the foreign agent.

Release lytic enzymes when destroyed, resulting in extracellular killing of organisms- and digestion of debris to enable healing to occur

 

Fulminant hepatitis

Fulminant hepatitis leads to submassive and massive hepatic necrosis. 
a. Etiology. HAV, HBV, HCV, delta virus (HDV) superinfection, HEV, chloroform, carbon tetrachloride, isoniazid, halothane, and other drugs (acetaminophen overdose) all may cause fulminant hepatitis.
b. Clinical features include progressive hepatic dysfunction with a mortality of 25%-90%.
c. Pathology

(1) Grossly, one sees progressive shrinkage of the liver as the parenchyma is destroyed. 

Biochemical examination

This is a method by which the metabolic disturbances of disease are investigated by assay of various normal and abnormal compounds in the blood, urine, etc.

Explore by Exams