Talk to us?

- NEETMDS- courses
NEET MDS Lessons
General Microbiology

Variant Forms of Bacteria

Prortoplast ; surface is completely devoid of cell wall component,

Spheroplast : Some residual cell wall component is present 

Autoplast: protoplasts which are produced by the action of organisms’ own autolytic enzymes.

L Form: replicate as pleomorphic filtrable elements with defective or no cell wall These are designated as L forms after the Lister Institute where these were discovered by Klineberger-Nobel.

Bacterial Spores: Gram positive bacilli and actinomycetes form highly resistant and dehydrated forms which are called as endospores. The surrounding mother.cell which give rise to them is known as Sporangium. These endospores are capable of survival under adverse conditions
Structure :smooth walled and ovoid or spherical. 

In bacilli, spores usually fit into the normal cell diameter except in Clostridium where these may cause a terminal bulge. (drum stick ) or central. , these look like areas of high refractilitv under light microscope.

Germination : This is the process of converting a spore into the vegetative cell. It occurs in less than 2 hours and has three stages:Activation, Germination, Outgrowth
 

Immunofluorescence

This is precipitation or complement fixation tests. The technique can detect proteins at concentrations of around 1 µg protein per ml body fluid. Major disadvantage with this technique is frequent occurrence of nonspecific fluorescence in the tissues and other material.
The fluorescent dyes commonly used are fluorescein isothocyanate (FITC). These dyes exhibit fluorescence by absorbing UV light between 290 and 495 nm and emitting longer wavelength coloured light of 525 nm which gives shining appearance (fluorescence) to protein labelled with dye. Blue green (apple green) fluorescence is seen with FITC and orange red with rhodamine.

Enzyme Immunoassays

These are commonly called as enzyme linked immunosorbent assays or EL1SA. It is a simple and versatile technique which is as sensitive as radioimmunoassays. It is now the
technique for the detection of antigens, antibodies, hormones, toxins and viruses.

Identification of organisms by immunofluorescence

Type of agent         Examples

Bacterial            Neisseria gonorrhoeae, H. influenzae ,Strept pyogenes, Treponema pallidum
Viral                  Herpesvirus, Rabiesvirus, Epstein-Barr virus
Mycotic             Candida albicans

Enzymatic activity results in a colour change which can be assessed visibly or quantified in a simple spectrophotometer.

GENETIC VARIATION

Two methods are known for genetic variation in bacteria: mutation and gene transfer.

Mutation : Any change in the sequence of bases of DNA, irrespective of detectable changes in the cell phenotype. Mutations may be spontaneous or induced by various agents which are known as mutagens. 

Spontaneous Mutations: Arise from enzymatic imperfections during DNA replications or with transient insertions of transposable elements.

Induced Mutations: Mutation by physical and chemical mutagens.

Physical mutagens  ultraviolet rays and high-energy ionizing radiations. The primary effect of UV rays on DNA is the production of pyrmidine dimers whereas ionizing radiations cause single_stranded breaks the DNA molecules.

Chemical mutagens :Affecting nucleotide sequence

(i) Agents which cause error in base pairing (e.g. nitrous acid and alkylating agents).
(ii) Agents which cause errors in DNA replication (e.g. acridine dyes such as acridine orange and profiavine).
(iii) Base analogs which are incorporated into DNA and cause replication errors (e.g. 5-bromouracil)

Gene Transfer

Transformation: Uptake of naked DNA

Transduction    : Infection by a nonlethal bacteriophage

Conjugation    : Mating between cells in contact

Protoplast fusion

Transformation: Gene transfer by soluble DNA is called as transformation. it requires that DNA be absorbed by the cell, gain entrance to the cytoplasm and undergo recombination with the host genome. 

Artificial Transformation(transfection) :Some of the bacteria (such as Escherichia coli) resist transformation until they are subjected to some special treatment such as CaCl2 to make the bacterium more permeable to DNA. Such modified cells can also take up intact double stranded DNA extracted from viruses or in the shape of plasmids. Though the process is same as transformation, it is 9 as transfection because it results in infection by an abnormal route

Transduction :The type of gene transfer in which the DNA of one bacterial cell is introduced into another bacterial cell by viral infection is known as transduction. This introduces only a small fragment of DNA. Because the DNA is protected from damage by the surrounding phage coat, transduction is an easier to perform and more reproducible process than transduction. ,

Two types of transduction are known.

- Generalized transduction When a bacteriophage picks up fragments of host DNA at random and can transfer any genes

-  Specialised transduction: phage DNA that has been integrated into the host chromosome is excised along with a few adjacent genes, which the phage can then transfer.

After entry into the host cell, the phage DNA gets incorporated into the host chromosome in such a way that the two genomes are linearly contiguous (lysogeny). The phage genome in this stage is known as prophage, The host cell acquires a significant new property as a consequence of lysogeny because it becomes immune to infection by homologous phage. This is hence called as lysogenic conversion and endow toxigenicity to Corynebacterium diphtheriae

Abortive Transduction :phage DNA fails to integrated into the host chromosome, the process is called as abortive transduction The phage DNA does not replicate and along with binary fission Of the host it goes into one of the daughter cells.

Conjugation :This is defined as the transfer of DNA directly from on bacterial. .cell to another by a mechanism that requires cell-to-cell contact. 

The capacity to donate DNA depends upon the possession of the fertility (F) factor. The F pili  also retard male-male union. Concomitant with effective male-female pair formation, the circular DNA bearing the F factor is converted to a linear form that is transferred to the female cell in a sequential manner. DNA replication occurs in the male cell and the newly synthesized, semiconserved DNA molecule remains in the male. This ensures postmating characters of the male.

Conjugation in Different Bacteria: Unusual form of plasmid transfer, called phase mediated conjugation has  been reported to occur with some strains of Staphylococcus aureus.

Protoplast Fusion: Also called as genetic transfusion. Under osmotically buffered Conditions protoplast fusion takes place by joining of cell membrane and generation of cytoplasmic bridges through which genetic material can be exchanged.

Transposons: Transposons  Tn  are  DNA sequences which are incapable of autonomous existence and which transpose blocks of genetic material back and forth between cell Chromosome and smaller replicons such as plasmids. insertion sequences (IS ) are another similar group of nucleotides which can move from one chromosome to another

Genetic material. IS and  Tn are collectively also known as transposable elements or Jumping genes. These are now recognised to play an important role in bringing about vanous types of mutations.


 

MICROBIAL VIRULENCE FACTORS 

Microbial virulence factors are gene products required for a microbial pathogen to establish itself in the host. These gene products are located on the bacterial chromosome, or on mobile genetic elements, such as plasmids or transposons.

Primary pathogens express virulence factors that allow them to cause disease in the normal  host.

Opportunistic pathogens are environmental organisms or normal flora that lack the means to overcome normal host defense mechanisms. They cause disease only when the normal host defenses are breached or deficient. 

Virulence factors can be divided into several categories.

Skin - Propionibacterium acnes, Staphlococcus epidermis , diptheroids; transient colonization by Staphlococcus
aureus

Oral cavity - Viridans Streptococci, Branhamella species, Prevotella melaninogenicus, Actinomyces species, Peptostreptococcus species, other anaerobes

Nasopharynx Oral organisms; transient colonization by S. pneumoniae, Haemophilus species, N. meningitidis  

Stomach Rapidly becomes sterile 

Small intestine Scant

Colon - Bacteroides species, Clostridium species, Fusobacterium species, E. coli, Proteus species, Pseudomonas aeruginosa, Enterococcus species, other bacteria and yeasts 

Vagina - Childbearing years:Lactobacillus species, yeasts, Streptococcus species 

Prepuberty / Postmenopause: colonic and skin flora 


A. Enzyme production can be of several types depending on the needs of the organism, its requirements for survival, and the local environment.
 
1. Hyaluronidase breaks down hyaluronic acid to aid in the digestion of tissue. 
2. Protease digests proteins to enhance the spread of infections. 
3. Coagulase allows coagulation of fibrinogen to clot plasma. 
4. Collagenase breaks down collagen (connective tissues). 

B. Toxins 

1. Exotoxins are heat-labile proteins with specific enzymatic activities produced by many Gram-positive and Gram-negative organisms. Exotoxins are released extracellularly and are often the sole cause of disease. 
a. Some toxins have several domains with discrete biological functions that confer maximal toxicity. An example is A-B exotoxin, where the B subunit binds to host tissue cell glycoproteins and the A subunit enzymatically attacks a susceptible target.
b. Many toxins are ADP-ribosylating toxins

2. Endotoxin is the heat-stable lipopolysaccharide moiety found in the outer membrane of Gram-negative organisms. when released by cell lysls, the lipid A portion of lipopolysaccharide can induce septic shock characterized by fever, acidosis, hypotension, complement consumption, and disseminated intravascular coagulation (DIC).  

C. Surface components 

may protect the organism from immune responses such as phagocytosis or aid in tissue invasion. For example, the polysaccharide capsules of H. influenzae type b and the acidic polysaccharide capsule of Streptococcus pneumoniae interfere with phagocytosis. Other surface proteins, such as adhesins or filamentous appendages (fimbriae, pili), are involved in adherence of invading microorganisms to cells of the host. 

Cell Functions:
-> Autolysis

- degradative reactions in cells caused by indigenous intracellular enzymes – usually occurs after cell death
- Irreversible (along with Coagulative necrosis or infarcts) – reversible: fatty degeneration, & hydropic degeneration

-> Autolysin:
•    Ab causing cellular lysis in the presence of complement
•    Autolytic enzymes produced by the organism degrade the cell’s own cell wall structures

-> In the presence of cephalosporins & penicillins, growing bacterial cells lyse
•    W/o functional cell wall structures, the bacterial cell bursts

-> Heterolysis: cellular degradation by enzymes derived from sources extrinsic to the cell (e.g., bacteria)

-> Necrosis: sum of intracellular degradative reactions occurring after individual cell death w/in a living organism

ANTIGEN-ANTIBODY REACTIONS

I. NATURE OF ANTIGEN-ANTIBODY REACTIONS

A. Lock and Key Concept 

The combining site of an antibody is located in the Fab portion of the molecule and is constructed from the hypervariable regions of the heavy and light chains. Antigen-antibody reactions is one of a key (i.e. the antigen) which fits into a lock (i.e. the antibody).

B. Non-covalent Bonds 

The bonds that hold the antigen to the antibody combining site are all non-covalent in nature. These include hydrogen bonds, electrostatic bonds, Van der Waals forces and hydrophobic bonds. 

C. Reversibility
Since antigen-antibody reactions occur via non-covalent bonds, they are by their nature reversible.
II. AFFINITY AND AVIDITY

A. Affinity 
Antibody affinity is the strength of the reaction between a single antigenic determinant and a single combining site on the antibody. It is the sum of the attractive and repulsive forces operating between the antigenic determinant and the combining site of the antibody .

B. Avidity
Avidity is a measure of the overall strength of binding of an antigen with many antigenic determinants and multivalent antibodies. Avidity is influenced by both the valence of the antibody and the valence of the antigen. Avidity is more than the sum of the individual affinities.

III. SPECIFICITY AND CROSS REACTIVITY

A. Specificity 

Specificity refers to the ability of an individual antibody combining site to react with only one antigenic determinant or the ability of a population of antibody molecules to react with only one antigen. In general, there is a high degree of specificity in antigen-antibody reactions. 

B. Cross reactivity 

Cross reactivity refers to the ability of an individual antibody combining site to react with more than one antigenic determinant or the ability of a population of antibody molecules to react with more than one antigen. 


 

NON-SPECIFIC KILLER CELLS

Several different cells including NK and LAK cells, K cells, activated macrophages and eosinophils are capable of killing foreign and altered self target cells in a non-specific manner. These cells play an important role in the innate immune system.

A. NK and LAK cells

Natural killer (NK) cells are also known as large granular lymphocytes (LGL) because they resemble lymphocytes in their morphology, except that they are slightly larger and have numerous granules.

NK cells can be identified by the presence of CD56 and CD16 and a lack of CD3 cell surface markers.

NK cells are capable of killing virus-infected and malignant target cells but they are relatively inefficient in doing so.

However, upon exposure to IL-2 and IFN-gamma, NK cells become lymphokine-activated killer (LAK) cells, which are capable of killing malignant cells.

Continued exposure to IL-2 and IFN-gamma enables the LAK cells to kill transformed as well as malignant cells. LAK cell therapy is one approach for the treatment of malignancies.

NK and LAK cells have two kinds of receptors on their surface – a killer activating receptor (KAR) and a killer inhibiting receptor (KIR). 

When the KAR encounters its ligand, a killer activating ligand (KAL) on the target cell the NK or LAK cells are capable of killing the target. However, if the KIR also binds to its ligand then killing is inhibited even if KAR binds to KAL. 

The ligands for KIR are MHC-class I molecules. Thus, if a target cell expresses class I MHC molecules it will not be killed by NK or LAK cells even if the target also has a KAL which could bind to KAR. 

Normal cells constitutively express MHC class I molecules on their surface, however, virus infected and malignant cells down regulate expression of class I MHC. Thus, NK and LAK cells selectively kill virus-infected and malignant cells while sparing normal cells.

B. K cells 

Killer (K) cells are not a morphologically distinct type of cell. Rather a K cell is any cell that mediates antibody-dependent cellular cytotoxicity (ADCC). 

In ADCC antibody acts as a link to bring the K cell and the target cell together to allow killing to occur. K cells have on their surface an Fc receptor for antibody and thus they can recognize, bind and kill target cells coated with antibody. 

Killer cells which have Fc receptors include NK, LAK, and macrophages which have an Fc receptor for IgG antibodies and eosinophils which have an Fc receptor for IgE antibodies.

Explore by Exams