Talk to us?

General Microbiology - NEETMDS- courses
NEET MDS Lessons
General Microbiology

Bacteria

A bacterial cell has a nuclear apparatus which is a loose arrangement of DNA This is surrounded cytoplasm which contains ribosomes, mesosomes and inclusion granules. The cytoplasm is enclosed within a cytoplasmic membrane. Bacterium has a rigid cell wall  Fimbriae and flagella are the surface adherents. Some bacteria may have a capsule (or loose slime) around the cell wall.

Shape and Size of Bacteria

The bacteria can be spheroidal (coccus), rod or cylindrical (bacillus) and spirillar (spirochaete). Very short bacilli are called as coccobacilli  Some of the bacilli may be curved or comma shaped (Vibrio cholerae).

Arrangement of Bacterial Cells

Streptococci are present in chains; staphylococci in grape-like clusters Cocci in pairs (diplococci) are suggestive of pneumococci, gonococci or menigococci.
Bacilli do not exhibit typical arrangement pattern except the Chinese letter arrangement shown by Corynebacterium diphtheriae

Surface Adherents and Appendages

CAPSULE The gels formed by the capsule adhere to the cell Capsule can be detected by negative staining ,with specific antiserum and observing the capsular swelling phenomenon called as Quellung reaction
Usually weakly antigenic Capsule production is better in vivo as compared to in vitro environment.
Eg. Capsules seen in Pneumococci,  Klebsiella, Escherichia coli, Haemophilus influenzae

Flagella : provide motility to the bacterium. 
Motile organisms: vibrios, pseudomonas, Esch.coli, salmonellae, spirochaetes and spirilla. 
Pathogenic cocci are nomotile.
Flagella measure in length from 3 to 20 µm and in diameter from 0.01 to 0.0 13 µm.
 
Arrangement

Bacteria with one polar flagellum are known as monotrichous; 
Tuft of several polar flagellae is known as lophotrichous
Presence of  Flagellae at both the ends of organism is amphitrichous 
Flagellae distributed all over the surface of the bacterium, it is called peritrichous.
•    Filament is composed of a protein-flagellin. The flagellar antigen is called as H (Hauch) antigen in contrast to somatic antigen which is called as O (Ohne haunch)

PILI (fimbriae) : hair like structures help in attachment also called sex pilli, transfers genetic material through conjugation , Present in Certain Gram negative bacteria. Only Composed of protein pilin  
Gram positive bacterium that has pili is Cornebacterium renale

The Cell Wall

The cell wall of  bacteria is multilayered structure. The external surface of cell wall is smooth in Gram positive bacteria  Gram negative bacteria have convoluted cell surfaces. The average thickness of cell wall is 0.15 to 0.50 .µm. Chemically composed of mucopeptide scaffolding formed by N acetyl glucosamine and N acetyl muramic acid
The cell wall is a three layered structure in Gram negative bacteria: outer membrane middle layer and plasma membrane. The outer membrane consists of lipoprotein and 1ipoppolysaccaride component

Functions of bacterial cell wall

 Provides shape , Gives rigidity , Protection, Surface has receptor sites for phages, Site of  antibody action,  Provides attachment to complement, Contains components toxic to host
 
Cytoplasmic Structures

The Plasma Membrane: This delicate membrane separates rigid cell wall from cytoplasm. It accounts for 30% of total cell weight. Chemically, it is 60% protein, 20-30% lipids and remaining carbohydrates.

 Mesosomes: 
 
 Principal sites of respiratory enzyme , Seen well in Gram positive bacteria as compared to Gram negative batcteria. Attachement of mesosomes to both DNA chromatin and membrane have been noticed thus help in cell division
 
Ribosomes: 

sites of protein synthesis. These are composed of RNA and proteins and constitute upto 4 of total cell protein and 90% of total cellular RNA.
Cytoplasmic Granules: Glycogen  :  Enteric bacteria
Poly-beta & hydroxy Butyrate : Bacillus & Pseudomonas
Babes-Ernst  :Corynebacterium & Yersinia pestis

Nuclear Apparatus

Bacterial DNA represents 2-3% of the cell weight and 10% of the volume of bacterium. Nucleous can be demonstrated by staining it with DNA specific Fuelgen stain .Consists of a single molecule of  double stranded DNA arranged in a circular form. Bacterial chromosome is haploid and replicates by binary fission, the bacteria may have  plasmid an extrachromosomal genetic material.
 

The cell cycle

1) Labile cells (GI tract, blood cells)
- Described as parenchymal cells that are normally found in the G0 phase that can be stimulated to enter the G1
- Undergo continuous replication, and the interval between two consecutive mitoses is designated as the cell cycle
- After division, the cells enter a gap phase (G1), in which they pursue their own specialized activities
•    If they continue in the cycle, after passing the restriction point (R), they are committed to a new round of division
•    The G1 phase is followed by a period of nuclear DNA synthesis (S) in which all chromosomes are replicated
•    The S phase is followed by a short gap phase (G2) and then by mitosis
•    After each cycle, one daughter cell will become committed to differentiation, and the other will continue cycling

2) Stable cells (Hepatocytes, Kidney)

- After mitosis, the cells take up their specialized functions (G0). 
- They do not re-enter the cycle unless stimulated by the loss of other cells

3) Permanent cells (neurons)

- Become terminally differentiated after mitosis and cannot re-enter the cell cycle
- Which cells do not have the ability to differentiate ->  Cardiac myocytes

CHEMICAL AGENTS

Chlorine and iodine are most useful disinfectant Iodine as a skin disinfectant and chlorine as a water disinfectant have given consistently magnificent results. Their activity is almost exclusively bactericidal and they are effective against sporulating organisms also. 
Mixtures of various surface acting agents with iodine are known as iodophores and these are used for the sterilization of dairy products.

Apart from chlorine, hypochlorite, inorganic chioramines are all good disinfectants but they act by liberating chlorine. 

Hydrogen peroxide in a 3% solution is a harmless but very weak disinfectant whose primary use is in the cleansing of the wound.
 
Potassium permanganate is another oxidising agent which is used in the treatment of urethntzs. 

Formaldehyde — is one of the least selective agent acting on proteins. It is a gas that is usually employed as its 37% solution, formalin. 

When used in sufficiently high concentration it destroys the bacteria and their spores.


Classification of chemical sterilizing agents

Chemical disinfectant

Interfere with membrane functions

•    Surface acting agents : Quaternary ammonium, Compounds, Soaps and fatty acids

•    Phenols : Phenol, cresol, Hexylresorcinol

•    Organic solvent : Chloroform, Alcohol

Denatures proteins

•    Acids and alkalies : Organic acids, Hydrochloric acid , Sulphuric acid

Destroy functional groups of proteins

•    Heavy metals :  Copper, silver , Mercury

•    Oxidizing agents: Iodine, chlorine, Hydrogen peroxide

•    Dyes : Acridine orange, Acriflavine

•    Alkylating agents : Formaldehyde, Ethylene oxide

Applications and in-use dilution of chemical disinfectants

Alcohols : Skin antiseptic Surface disinfectant, Dilution used 70%

Mercurials : Skin antiseptic Surface disinfectant Dilution Used 0.1 %

Silver nitrate : Antiseptic (eyes and burns)  Dilution Used 1 %

Phenolic compound : Antiseptic skin washes  Dilution Used .5 -5 %

Iodine : Disinfects inanimate object, Skin antiseptic Dilution used  2%

Chlorine compounds  : Water treatment Disinfect inanimate objects , Dillution used 5 %

Quaternary ammonium Compounds : Skin antiseptic , Disinfects inanimate object, Dilution Used < 1 %

Glutaraldehyde: Heat sensitve instruments, Dilution used 1-2 %

Cold sterilization can be achieved by dipping the precleaned instrument in 2% solution of gluteraldehyde for 15-20 minutes. This time is sufficient to kill the vegetative form as well as spores ofthe organisms that are commonly encountered in the dentistry.

Ethylene oxide is an a agent extensively used in gaseous sterilization. It is active against all kinds of bacteria and their spores. but its greatest utility is in sterilizing those objects which are damaged by heat (e.g. heart lung machine). It is also used to sterlise fragile, heat sensitive equipment, powders as well as components of space crafts.


Evaluation of Disinfectants

Two methods which are widely employed are:

 Phenol coefficient test, Kelsey -Sykes test
 
These tests determine the capacity of disinfectant as well as their ability to retain their activity.
 

Neutralization Test

These are basically of two types:

•    Toxin neutralization
•    Virus neutralization


In toxin neutralization homologous anti-bodies prevent the biological effect of toxin as observed in vivo in experimental animals (e.g. detection of toxin of Clostridia and Corynebacterium diphthenae) or by in vitro method (e.g. Nagler’s method).

In virus neutralization test various methods are available by which identity of virus can be established as well as antibody against a virus can be estimated.

Measurement of Bacterial of Growth

A convenient method is to determine turbidity by photoelectric colorimeter or spectrophotometer. 
The cell number can be counted as total cell number as well as viable count. Viable Count Viable number of bacteria can be counted by inoculating the suspension onto solid growth medium and counting the number of colonies. Since each colony is the end product of one viable bacterium, their count gives the number of viable bacteria in the suspension.
Total number of bacteria can be ascertained in specially designed chambers such as Coulter counter.
 

Autoantibodies

Anti-nuclear antibodies (ANA)    Systemic Lupus
Anti-dsDNA, anti-Smith               Specific for Systemic Lupus
Anti-histone                                 Drug-induced Lupus
Anti-IgG                                       Rheumatoid arthritis
Anti-neutrophil                             Vasculitis
Anti-centromere                           Scleroderma (CREST)
Anti-Scl-70                                   Sclerderma (diffuse)
Anti-mitochondria                         1oary biliary cirrhosis
Anti-gliadin                                   Celiac disease
Anti-basement membrane            Goodpasture’s syndrome
Anti-epithelial cell                          Pemphigus vulgaris
Anti-microsomal                            Hashimoto’s thryoiditis

Enzymes:

Serum lysozyme:

Provides innate & nonspecific immunity
Lysozyme is a hydrolytic enzyme capable of digesting bacterial cell walls containing peptidoglycan 
•    In the process of cell death, lysosomal NZs fxn mainly to aulolyse necrotic cells (NOT “mediate cell degradation”)
•    Attacks bacterial cells by breaking the bond between NAG and NAM.
•    Peptidoglycan – the rigid component of cell walls in most bacteria – not found in archaebacteria or eukaryotic cells
•    Lysozyme is found in serum, tears, saliva, egg whites & phagocytic cells protecting the host nonspecifically from microorganisms

Superoxide dismutase: catalyzes the destruction of O2 free radicals protecting O2-metabolizing cells against harmful effects 

Catalase:

- catalyzes the decomposition of H2O2 into H2O & O2
- Aerobic bacteria and facultative anaerobic w/ catalase are able to resist the effects of H2O2
- Anaerobic bacteria w/o catalase are sensitive to H2O2  (Peroxide), like Strep
- Anaerobic bacteria (obligate anaerobes) lack superoxide dismutase or catalase
- Staph makes catalase, where Strep does not have enough staff to make it

Coagulase

- Converts Fibronogen to fibrin
•    Coagulase test is the prime criterion for classifying a bug as Staph aureus – from other Staph species
•    Coagulase is important to the pathogenicity of S. aureus because it helps to establish the typical abscess lesion 
•    Coagulase also coats the surface w/ fibrin upon contact w/ blood, making it harder to phagocytize

Explore by Exams