NEET MDS Lessons
General Microbiology
Application of agglutination reactions
Agglutination reaction Example
Tube agglutination -> Widal test, Weil Felix reaction, Standard tube test for brucellosis
Slide agglutination -> Typing of pneumococci,Diagnosis of Salmonella,Diagnosis of Shigella
Agglutination Absorption test -> Salmonella diagnosis
Coagglutination -> Grouping of streptococci, Identification of gonococci, Detection of Haemophilus, Antigen in CSF
Passive agglutination
Latex agglutination Detection of HBs Ag, ASO, CRP
CROSS INFECTION AND STERLIZATION IN DENTISTRY
Cross infection is defined as the transmission of infectious agents amongst patients and staff with in hospital environment.
Routes of Infection
Two routes are important : transdermal and respiratory.
In transdermal route microorganisms enter the tissues of the recipient by means of injection through intact skin or mucosa (usually due to an accident involving a sharp instrument) or via defects in the skin e.g. recent cuts and abrasions.
Microorganisms causing cross infection in dentistry
Transmitted through skin
Bacteria : Treponema pallidum, Staphylococcus aureus
Viruses :Hepatitis virus, HIV ,Herpes simplex virus, Mumps, Measles , Epstein-Barr virus
Fungi: Dermatomycoses, Candidiasis,
Transmitted through aerosols
Bordetella pertussis, Myco.tuberculosis, Streptococcus pyogenes, Influenza virus
Rhinovirus, Rubella
BACTERIAL GROWTH
The conversion of a parental cell into two daughters constitutes the bacterial life cycle and the time taken to complete cell cycle is known as generation_time. This is around 15 minutes in vegetative bacteria except mycobacteria.
Bacterial Growth Curve
In the presence of fresh growth medium a bacterium shows following four phases;
The Lag phase -> The Log phase -> The Stationary phase -> The Decline phase
The Lag Phase : short duration , bacteria adapt themselves to new environment
The Log Phase (Exponential Phase) : Regular growth of bacteria occurs The morphology of bacteria is best developed in this phase and organisms manifest typical biochemical characters.
- Most of the cidal Abx work best in this phase
• i.e. Ampicillin
- Best phase for staining bacterial cultures
Chemostat and turbidostat are examples of technique by which this phase can be prolonged.
Stationary Phase : balanced growth and cell division cannot be sustained. The total cell Count remains static till lysis supervenes, but the viable cell count quickly declines.
Decline Phase: death phase. Dyeing bacteria exceed the dividing bacterias.
Autoantibodies
Anti-nuclear antibodies (ANA) Systemic Lupus
Anti-dsDNA, anti-Smith Specific for Systemic Lupus
Anti-histone Drug-induced Lupus
Anti-IgG Rheumatoid arthritis
Anti-neutrophil Vasculitis
Anti-centromere Scleroderma (CREST)
Anti-Scl-70 Sclerderma (diffuse)
Anti-mitochondria 1oary biliary cirrhosis
Anti-gliadin Celiac disease
Anti-basement membrane Goodpasture’s syndrome
Anti-epithelial cell Pemphigus vulgaris
Anti-microsomal Hashimoto’s thryoiditis
THE PLASMIDS
The extrachromosomal genetic elements, called as plasmids are autonomously replicating , cyclic ,double stranded DNA molecules which are distinct from the cellular chromosome
Classification
Plasmids can be broadly classified as conjugative and nonconjugative.
Conjugative plasmids are large and self-transmissible i.e. they have an apparatus through which they can mediate their own transfer to another cell after coming in contact with the same. Example: RF and certain bacteriocinogen plasmids.
Nonconjugative plasmids are small in size and can be mobilised for transfer into another cell only through the help of a conjugative plasmid. To this group belong some ‘r’ determinants and few bacteriocinogenic plasmids. Plasmids can also be transferred without cell contact by the process of transfection.
Properties of plasmids
Double stranded DNA , Autonomously replicate in host cell, Plasmd specific, Free DNA is transferred b transfection
Significance of Plasmids :The spread of resistance to antibiotics is one such well known example. These also play an important role in the geochemical cycle by spreading genes for the degradation of complex organic compounds.
CELLS ORGANELLES
Cell parts:
Mitochondrion – double MB structure responsible for cellular metabolism – powerhouse of the cell
Nucleus – controls synthetic activities and stores genetic information
Ribosome – site of mRNA attachment and amino acid assembly, protein synthesis
Endoplasmic reticulum – functions in intracellular transportation
Gogli apparatus/complex – composed of membranous sacs – involved in production of large CHO molecules & lysosomes
Lysosome – organelle contains hydrolytic enzymes necessary for intracellular digestion
Membrane bag containing digestive enzymes
Cellular food digestion – lysosome MB fuses w/ MB of food vacuole & squirts the enzymes inside. Digested food diffuses through the vacuole MB to enter the cell to be used for energy or growth. Lysosome MB keeps the cell iself from being digested
-Involved mostly in cells that like to phagocytose
-Involved in autolytic and digestive processes
-Formed when the Golgi complex packages up an especially large vesicle of digestive enzyme proteins
Phagosome
– vesicle that forms around a particle (bacterial or other) w/in the phagocyte that engulfed it
- Then separates from the cell membrane bag & fuses w/ lysozome to receive contents
- This coupling forms phagolysosomes in which digestion of the engulfed particle occurs
Microbodies:
- Contain catalase
- Bounded by a single membrane bag
- Compartments specialized for specific metabolic pathways
- Similar in function to lysosomes, but are smaller & isolate metabolic reactions involving H2O2
- Two general families:
· Peroxisomes: transfer H2 to O2, producing H2O2 – generally not found in plants
· Glyoxysomes: common in fat-storing tissues of the germinating seeds of plants
¨ Contain enzymes that convert fats to sugar to make the energy stored in the oils of the seed available
Inclusions
– transitory, non-living metabolic byproducts found in the cytoplasm of the cell
- May appear as fat droplets, CHO accumulations, or engulfed foreign matter.
Measurement of Bacterial of Growth
A convenient method is to determine turbidity by photoelectric colorimeter or spectrophotometer.
The cell number can be counted as total cell number as well as viable count. Viable Count Viable number of bacteria can be counted by inoculating the suspension onto solid growth medium and counting the number of colonies. Since each colony is the end product of one viable bacterium, their count gives the number of viable bacteria in the suspension.
Total number of bacteria can be ascertained in specially designed chambers such as Coulter counter.