NEET MDS Lessons
General Microbiology
THE PLASMIDS
The extrachromosomal genetic elements, called as plasmids are autonomously replicating , cyclic ,double stranded DNA molecules which are distinct from the cellular chromosome
Classification
Plasmids can be broadly classified as conjugative and nonconjugative.
Conjugative plasmids are large and self-transmissible i.e. they have an apparatus through which they can mediate their own transfer to another cell after coming in contact with the same. Example: RF and certain bacteriocinogen plasmids.
Nonconjugative plasmids are small in size and can be mobilised for transfer into another cell only through the help of a conjugative plasmid. To this group belong some ‘r’ determinants and few bacteriocinogenic plasmids. Plasmids can also be transferred without cell contact by the process of transfection.
Properties of plasmids
Double stranded DNA , Autonomously replicate in host cell, Plasmd specific, Free DNA is transferred b transfection
Significance of Plasmids :The spread of resistance to antibiotics is one such well known example. These also play an important role in the geochemical cycle by spreading genes for the degradation of complex organic compounds.
Neutralization Test
These are basically of two types:
• Toxin neutralization
• Virus neutralization
In toxin neutralization homologous anti-bodies prevent the biological effect of toxin as observed in vivo in experimental animals (e.g. detection of toxin of Clostridia and Corynebacterium diphthenae) or by in vitro method (e.g. Nagler’s method).
In virus neutralization test various methods are available by which identity of virus can be established as well as antibody against a virus can be estimated.
PHAGOCYTOSIS AND INTRACELLULAR KILLING
A. Phagocytic cells
1. Neutrophiles/Polymorphonuclear cells
PMNs are motile phagocytic cells that have lobed nuclei. They can be identified by their characteristic nucleus or by an antigen present on the cell surface called CD66. They contain two kinds of granules the contents of which are involved in the antimicrobial properties of these cells.
The second type of granule found in more mature PMNs is the secondary or specific granule. These contain lysozyme, NADPH oxidase components, which are involved in the generation of toxic oxygen products, and characteristically lactoferrin, an iron chelating protein and B12-binding protein.
2. Monocytes/Macrophages
Macrophages are phagocytic cells . They can be identified morphologically or by the presence of the CD14 cell surface marker.
B. Response of phagocytes to infection
Circulating PMNs and monocytes respond to danger (SOS) signals generated at the site of an infection. SOS signals include N-formyl-methionine containing peptides released by bacteria, clotting system peptides, complement products and cytokines released from tissue macrophages that have encountered bacteria in tissue.
Some of the SOS signals stimulate endothelial cells near the site of the infection to express cell adhesion molecules such as ICAM-1 and selectins which bind to components on the surface of phagocytic cells and cause the phagocytes to adhere to the endothelium.
Vasodilators produced at the site of infection cause the junctions between endothelial cells to loosen and the phagocytes then cross the endothelial barrier by “squeezing” between the endothelial cells in a process called diapedesis.
Once in the tissue spaces some of the SOS signals attract phagocytes to the infection site by chemotaxis (movement toward an increasing chemical gradient). The SOS signals also activate the phagocytes, which results in increased phagocytosis and intracellular killing of the invading organisms.
C. Initiation of Phagocytosis
Phagocytic cells have a variety of receptors on their cell membranes through which infectious agents bind to the cells. These include:
1. Fc receptors – Bacteria with IgG antibody on their surface have the Fc region exposed and this part of the Ig molecule can bind to the receptor on phagocytes. Binding to the Fc receptor requires prior interaction of the antibody with an antigen. Binding of IgG-coated bacteria to Fc receptors results in enhanced phagocytosis and activation of the metabolic activity of phagocytes (respiratory burst).
2. Complement receptors – Phagocytic cells have a receptor for the 3rd component of complement, C3b. Binding of C3b-coated bacteria to this receptor also results in enhanced phagocytosis and stimulation of the respiratory burst.
3. Scavenger receptors – Scavenger receptors bind a wide variety of polyanions on bacterial surfaces resulting in phagocytosis of bacteria.
4. Toll-like receptors – Phagocytes have a variety of Toll-like receptors (Pattern Recognition Receptors or PRRs) which recognize broad molecular patterns called PAMPs (pathogen associated molecular patterns) on infectious agents. Binding of infectious agents via Toll-like receptors results in phagocytosis and the release of inflammatory cytokines (IL-1, TNF-alpha and IL-6) by the phagocytes.
D. Phagocytosis
The pseudopods eventually surround the bacterium and engulf it, and the bacterium is enclosed in a phagosome. During phagocytosis the granules or lysosomes of the phagocyte fuse with the phagosome and empty their contents. The result is a bacterium engulfed in a phagolysosome which contains the contents of the granules or lysosomes.
E. Respiratory burst and intracellular killing
During phagocytosis there is an increase in glucose and oxygen consumption which is referred to as the respiratory burst. The consequence of the respiratory burst is that a number of oxygen-containing compounds are produced which kill the bacteria being phagocytosed. This is referred to as oxygen-dependent intracellular killing. In addition, bacteria can be killed by pre-formed substances released from granules or lysosomes when they fuse with the phagosome. This is referred to as oxygen-independent intracellular killing.
1. Oxygen-dependent myeloperoxidase-independent intracellular killing
During phagocytosis glucose is metabolized via the pentose monophosphate shunt and NADPH is formed. Cytochrome B which was part of the specific granule combines with the plasma membrane NADPH oxidase and activates it. The activated NADPH oxidase uses oxygen to oxidize the NADPH. The result is the production of superoxide anion. Some of the superoxide anion is converted to H2O2 and singlet oxygen by superoxide dismutase. In addition, superoxide anion can react with H2O2 resulting in the formation of hydroxyl radical and more singlet oxygen. The result of all of these reactions is the production of the toxic oxygen compounds superoxide anion (O2-), H2O2, singlet oxygen (1O2) and hydroxyl radical (OH•).
2. Oxygen-dependent myeloperoxidase-dependent intracellular killing
As the azurophilic granules fuse with the phagosome, myeloperoxidase is released into the phagolysosome. Myeloperoxidase utilizes H2O2 and halide ions (usually Cl-) to produce hypochlorite, a highly toxic substance. Some of the hypochlorite can spontaneously break down to yield singlet oxygen. The result of these reactions is the production of toxic hypochlorite (OCl-) and singlet oxygen (1O2).
3. Detoxification reactions
PMNs and macrophages have means to protect themselves from the toxic oxygen intermediates. These reactions involve the dismutation of superoxide anion to hydrogen peroxide by superoxide dismutase and the conversion of hydrogen peroxide to water by catalase.
4. Oxygen-independent intracellular killing
In addition to the oxygen-dependent mechanisms of killing there are also oxygen–independent killing mechanisms in phagocytes: cationic proteins (cathepsin) released into the phagolysosome can damage bacterial membranes; lysozyme breaks down bacterial cell walls; lactoferrin chelates iron, which deprives bacteria of this required nutrient; hydrolytic enzymes break down bacterial proteins. Thus, even patients who have defects in the oxygen-dependent killing pathways are able to kill bacteria. However, since the oxygen-dependent mechanisms are much more efficient in killing, patients with defects in these pathways are more susceptible and get more serious infections.
NITRIC OXIDE-DEPENDENT KILLING
Binding of bacteria to macrophages, particularly binding via Toll-like receptors, results in the production of TNF-alpha, which acts in an autocrine manner to induce the expression of the inducible nitric oxide synthetase gene (i-nos ) resulting in the production of nitric oxide (NO) . If the cell is also exposed to interferon gamma (IFN-gamma) additional nitric oxide will be produced (figure 12). Nitric oxide released by the cell is toxic and can kill microorganism in the vicinity of the macrophage.
CELLS ORGANELLES
Cell parts:
Mitochondrion – double MB structure responsible for cellular metabolism – powerhouse of the cell
Nucleus – controls synthetic activities and stores genetic information
Ribosome – site of mRNA attachment and amino acid assembly, protein synthesis
Endoplasmic reticulum – functions in intracellular transportation
Gogli apparatus/complex – composed of membranous sacs – involved in production of large CHO molecules & lysosomes
Lysosome – organelle contains hydrolytic enzymes necessary for intracellular digestion
Membrane bag containing digestive enzymes
Cellular food digestion – lysosome MB fuses w/ MB of food vacuole & squirts the enzymes inside. Digested food diffuses through the vacuole MB to enter the cell to be used for energy or growth. Lysosome MB keeps the cell iself from being digested
-Involved mostly in cells that like to phagocytose
-Involved in autolytic and digestive processes
-Formed when the Golgi complex packages up an especially large vesicle of digestive enzyme proteins
Phagosome
– vesicle that forms around a particle (bacterial or other) w/in the phagocyte that engulfed it
- Then separates from the cell membrane bag & fuses w/ lysozome to receive contents
- This coupling forms phagolysosomes in which digestion of the engulfed particle occurs
Microbodies:
- Contain catalase
- Bounded by a single membrane bag
- Compartments specialized for specific metabolic pathways
- Similar in function to lysosomes, but are smaller & isolate metabolic reactions involving H2O2
- Two general families:
· Peroxisomes: transfer H2 to O2, producing H2O2 – generally not found in plants
· Glyoxysomes: common in fat-storing tissues of the germinating seeds of plants
¨ Contain enzymes that convert fats to sugar to make the energy stored in the oils of the seed available
Inclusions
– transitory, non-living metabolic byproducts found in the cytoplasm of the cell
- May appear as fat droplets, CHO accumulations, or engulfed foreign matter.
Enzymes:
Serum lysozyme:
Provides innate & nonspecific immunity
Lysozyme is a hydrolytic enzyme capable of digesting bacterial cell walls containing peptidoglycan
• In the process of cell death, lysosomal NZs fxn mainly to aulolyse necrotic cells (NOT “mediate cell degradation”)
• Attacks bacterial cells by breaking the bond between NAG and NAM.
• Peptidoglycan – the rigid component of cell walls in most bacteria – not found in archaebacteria or eukaryotic cells
• Lysozyme is found in serum, tears, saliva, egg whites & phagocytic cells protecting the host nonspecifically from microorganisms
Superoxide dismutase: catalyzes the destruction of O2 free radicals protecting O2-metabolizing cells against harmful effects
Catalase:
- catalyzes the decomposition of H2O2 into H2O & O2
- Aerobic bacteria and facultative anaerobic w/ catalase are able to resist the effects of H2O2
- Anaerobic bacteria w/o catalase are sensitive to H2O2 (Peroxide), like Strep
- Anaerobic bacteria (obligate anaerobes) lack superoxide dismutase or catalase
- Staph makes catalase, where Strep does not have enough staff to make it
Coagulase
- Converts Fibronogen to fibrin
• Coagulase test is the prime criterion for classifying a bug as Staph aureus – from other Staph species
• Coagulase is important to the pathogenicity of S. aureus because it helps to establish the typical abscess lesion
• Coagulase also coats the surface w/ fibrin upon contact w/ blood, making it harder to phagocytize
Bacteria
A bacterial cell has a nuclear apparatus which is a loose arrangement of DNA This is surrounded cytoplasm which contains ribosomes, mesosomes and inclusion granules. The cytoplasm is enclosed within a cytoplasmic membrane. Bacterium has a rigid cell wall Fimbriae and flagella are the surface adherents. Some bacteria may have a capsule (or loose slime) around the cell wall.
Shape and Size of Bacteria
The bacteria can be spheroidal (coccus), rod or cylindrical (bacillus) and spirillar (spirochaete). Very short bacilli are called as coccobacilli Some of the bacilli may be curved or comma shaped (Vibrio cholerae).
Arrangement of Bacterial Cells
Streptococci are present in chains; staphylococci in grape-like clusters Cocci in pairs (diplococci) are suggestive of pneumococci, gonococci or menigococci.
Bacilli do not exhibit typical arrangement pattern except the Chinese letter arrangement shown by Corynebacterium diphtheriae
Surface Adherents and Appendages
CAPSULE The gels formed by the capsule adhere to the cell Capsule can be detected by negative staining ,with specific antiserum and observing the capsular swelling phenomenon called as Quellung reaction
Usually weakly antigenic Capsule production is better in vivo as compared to in vitro environment.
Eg. Capsules seen in Pneumococci, Klebsiella, Escherichia coli, Haemophilus influenzae
Flagella : provide motility to the bacterium.
Motile organisms: vibrios, pseudomonas, Esch.coli, salmonellae, spirochaetes and spirilla.
Pathogenic cocci are nomotile.
Flagella measure in length from 3 to 20 µm and in diameter from 0.01 to 0.0 13 µm.
Arrangement
Bacteria with one polar flagellum are known as monotrichous;
Tuft of several polar flagellae is known as lophotrichous
Presence of Flagellae at both the ends of organism is amphitrichous
Flagellae distributed all over the surface of the bacterium, it is called peritrichous.
• Filament is composed of a protein-flagellin. The flagellar antigen is called as H (Hauch) antigen in contrast to somatic antigen which is called as O (Ohne haunch)
PILI (fimbriae) : hair like structures help in attachment also called sex pilli, transfers genetic material through conjugation , Present in Certain Gram negative bacteria. Only Composed of protein pilin
Gram positive bacterium that has pili is Cornebacterium renale
The Cell Wall
The cell wall of bacteria is multilayered structure. The external surface of cell wall is smooth in Gram positive bacteria Gram negative bacteria have convoluted cell surfaces. The average thickness of cell wall is 0.15 to 0.50 .µm. Chemically composed of mucopeptide scaffolding formed by N acetyl glucosamine and N acetyl muramic acid
The cell wall is a three layered structure in Gram negative bacteria: outer membrane middle layer and plasma membrane. The outer membrane consists of lipoprotein and 1ipoppolysaccaride component
Functions of bacterial cell wall
Provides shape , Gives rigidity , Protection, Surface has receptor sites for phages, Site of antibody action, Provides attachment to complement, Contains components toxic to host
Cytoplasmic Structures
The Plasma Membrane: This delicate membrane separates rigid cell wall from cytoplasm. It accounts for 30% of total cell weight. Chemically, it is 60% protein, 20-30% lipids and remaining carbohydrates.
Mesosomes:
Principal sites of respiratory enzyme , Seen well in Gram positive bacteria as compared to Gram negative batcteria. Attachement of mesosomes to both DNA chromatin and membrane have been noticed thus help in cell division
Ribosomes:
sites of protein synthesis. These are composed of RNA and proteins and constitute upto 4 of total cell protein and 90% of total cellular RNA.
Cytoplasmic Granules: Glycogen : Enteric bacteria
Poly-beta & hydroxy Butyrate : Bacillus & Pseudomonas
Babes-Ernst :Corynebacterium & Yersinia pestis
Nuclear Apparatus
Bacterial DNA represents 2-3% of the cell weight and 10% of the volume of bacterium. Nucleous can be demonstrated by staining it with DNA specific Fuelgen stain .Consists of a single molecule of double stranded DNA arranged in a circular form. Bacterial chromosome is haploid and replicates by binary fission, the bacteria may have plasmid an extrachromosomal genetic material.