NEET MDS Lessons
General Microbiology
Radioimmunoassays (RIA)
It is an extremely sensitive technique in which antibody or antigen is labelled with a radioactive material. The amount of radioactive material in the antigen-antibody complex can be measured with which concentration of antigen or antibody can be assayed. After the reaction ‘free’ and ‘bound’ fractions of antigen are separated and their radioactivity-measured.
ANTIGEN-ANTIBODY REACTIONS
I. NATURE OF ANTIGEN-ANTIBODY REACTIONS
A. Lock and Key Concept
The combining site of an antibody is located in the Fab portion of the molecule and is constructed from the hypervariable regions of the heavy and light chains. Antigen-antibody reactions is one of a key (i.e. the antigen) which fits into a lock (i.e. the antibody).
B. Non-covalent Bonds
The bonds that hold the antigen to the antibody combining site are all non-covalent in nature. These include hydrogen bonds, electrostatic bonds, Van der Waals forces and hydrophobic bonds.
C. Reversibility
Since antigen-antibody reactions occur via non-covalent bonds, they are by their nature reversible.
II. AFFINITY AND AVIDITY
A. Affinity
Antibody affinity is the strength of the reaction between a single antigenic determinant and a single combining site on the antibody. It is the sum of the attractive and repulsive forces operating between the antigenic determinant and the combining site of the antibody .
B. Avidity
Avidity is a measure of the overall strength of binding of an antigen with many antigenic determinants and multivalent antibodies. Avidity is influenced by both the valence of the antibody and the valence of the antigen. Avidity is more than the sum of the individual affinities.
III. SPECIFICITY AND CROSS REACTIVITY
A. Specificity
Specificity refers to the ability of an individual antibody combining site to react with only one antigenic determinant or the ability of a population of antibody molecules to react with only one antigen. In general, there is a high degree of specificity in antigen-antibody reactions.
B. Cross reactivity
Cross reactivity refers to the ability of an individual antibody combining site to react with more than one antigenic determinant or the ability of a population of antibody molecules to react with more than one antigen.
Enzymes:
Serum lysozyme:
Provides innate & nonspecific immunity
Lysozyme is a hydrolytic enzyme capable of digesting bacterial cell walls containing peptidoglycan
• In the process of cell death, lysosomal NZs fxn mainly to aulolyse necrotic cells (NOT “mediate cell degradation”)
• Attacks bacterial cells by breaking the bond between NAG and NAM.
• Peptidoglycan – the rigid component of cell walls in most bacteria – not found in archaebacteria or eukaryotic cells
• Lysozyme is found in serum, tears, saliva, egg whites & phagocytic cells protecting the host nonspecifically from microorganisms
Superoxide dismutase: catalyzes the destruction of O2 free radicals protecting O2-metabolizing cells against harmful effects
Catalase:
- catalyzes the decomposition of H2O2 into H2O & O2
- Aerobic bacteria and facultative anaerobic w/ catalase are able to resist the effects of H2O2
- Anaerobic bacteria w/o catalase are sensitive to H2O2 (Peroxide), like Strep
- Anaerobic bacteria (obligate anaerobes) lack superoxide dismutase or catalase
- Staph makes catalase, where Strep does not have enough staff to make it
Coagulase
- Converts Fibronogen to fibrin
• Coagulase test is the prime criterion for classifying a bug as Staph aureus – from other Staph species
• Coagulase is important to the pathogenicity of S. aureus because it helps to establish the typical abscess lesion
• Coagulase also coats the surface w/ fibrin upon contact w/ blood, making it harder to phagocytize
ANTIGENS
Immunogen
A substance that induces a specific immune response.
Antigen (Ag)
A substance that reacts with the products of a specific immune response.
Hapten
A substance that is non-immunogenic but which can react with the products of a specific immune response. Haptens are small molecules which could never induce an immune response when administered by themselves but which can when coupled to a carrier molecule. Free haptens, however, can react with products of the immune response after such products have been elicited. Haptens have the property of antigenicity but not immunogenicity.
Epitope or Antigenic Determinant
That portion of an antigen that combines with the products of a specific immune response.
Antibody (Ab)
A specific protein which is produced in response to an immunogen and which reacts with an antigen.
FACTORS INFLUENCING IMMUNOGENICITY
- Larger the molecule the more immunogenic it is likely to be.
- More complex the substance is chemically the more immunogenic it will be.
- Particulate antigens are more immunogenic than soluble ones and denatured antigens more immunogenic than the native form.
- Antigens that are easily phagocytosed are generally more immunogenic. This is because for most antigens (T-dependant antigens, see below) the development of an immune response requires that the antigen be phagocytosed, processed and presented to helper T cells by an antigen presenting cell (APC).
- Some substances are immunogenic in one species but not in another. Similarly, some substances are immunogenic in one individual but not in others (i.e. responders and non-responders). The species or individuals may lack or have altered genes that code for the receptors for antigen on B cells and T cells or they may not have the appropriate genes needed for the APC to present antigen to the helper T cells.
Method of Administration
1. Dose
The dose of administration of an immunogen can influence its immunogenicity. There is a dose of antigen above or below which the immune response will not be optimal.
2. Route
Generally the subcutaneous route is better than the intravenous or intragastric routes. The route of antigen administration can also alter the nature of the response
3. Adjuvants
Substances that can enhance the immune response to an immunogen are called adjuvants. The use of adjuvants, however, is often hampered by undesirable side effects such as fever and inflammation.
TYPES OF ANTIGENS
T-independent Antigens
T-independent antigens are antigens which can directly stimulate the B cells to produce antibody without the requirement for T cell help In general, polysaccharides are T-independent antigens. The responses to these antigens differ from the responses to other antigens.
Properties of T-independent antigens
1. Polymeric structure
These antigens are characterized by the same antigenic determinant .
2. Polyclonal activation of B cells
Many of these antigens can activate B cell clones specific for other antigens (polyclonal activation). T-independent antigens can be subdivided into Type 1 and Type 2 based on their ability to polyclonally activate B cells. Type 1 T-independent antigens are polyclonal activators while Type 2 are not.
3. Resistance to degradation
T-independent antigens are generally more resistant to degradation and thus they persist for longer periods of time and continue to stimulate the immune system.
T-dependent Antigens
T-dependent antigens are those that do not directly stimulate the production of antibody without the help of T cells. Proteins are T-dependent antigens. Structurally these antigens are characterized by a few copies of many different antigenic determinants as illustrated in the Figure 2.
HAPTEN-CARRIER CONJUGATES
Hapten-carrier conjugates are immunogenic molecules to which haptens have been covalently attached. The immunogenic molecule is called the carrier.
Structure
Structurally these conjugates are characterized by having native antigenic determinants of the carrier as well as new determinants created by the hapten (haptenic determinants). The actual determinant created by the hapten consists of the hapten and a few of the adjacent residues, although the antibody produced to the determinant will also react with free hapten. In such conjugates the type of carrier determines whether the response will be T-independent or T-dependent.
SUPERANTIGENS
When the immune system encounters a conventional T-dependent antigen, only a small fraction (1 in 104 -105) of the T cell population is able to recognize the antigen and become activated (monoclonal/oligoclonal response). However, there are some antigens which polyclonally activate a large fraction of the T cells (up to 25%). These antigens are called superantigens .
Examples of superantigens include: Staphylococcal enterotoxins (food poisoning), Staphylococcal toxic shock toxin (toxic shock syndrome), Staphylococcal exfoliating toxins (scalded skin syndrome) and Streptococcal pyrogenic exotoxins (shock).
The cell cycle
1) Labile cells (GI tract, blood cells)
- Described as parenchymal cells that are normally found in the G0 phase that can be stimulated to enter the G1
- Undergo continuous replication, and the interval between two consecutive mitoses is designated as the cell cycle
- After division, the cells enter a gap phase (G1), in which they pursue their own specialized activities
• If they continue in the cycle, after passing the restriction point (R), they are committed to a new round of division
• The G1 phase is followed by a period of nuclear DNA synthesis (S) in which all chromosomes are replicated
• The S phase is followed by a short gap phase (G2) and then by mitosis
• After each cycle, one daughter cell will become committed to differentiation, and the other will continue cycling
2) Stable cells (Hepatocytes, Kidney)
- After mitosis, the cells take up their specialized functions (G0).
- They do not re-enter the cycle unless stimulated by the loss of other cells
3) Permanent cells (neurons)
- Become terminally differentiated after mitosis and cannot re-enter the cell cycle
- Which cells do not have the ability to differentiate -> Cardiac myocytes
Method of Sterilization for common items
Autoclaving : Animal cages, Sugar tubes, Lab. Coats, Cotton , Filters, Instruments Culture media, Rubber, Gloves , Stopper, Tubing, Slides, Syringe and Wax needles , Test tubes, Enamel metal trays ,Wire baskets, Wood, Tongue depressor, Applicator, Endodontic instruments, Orthodontic pliers , Orthodontic kits, Saliva ejector, Handpieces Cavitron heads, Steel burs, Steel tumbler, Hand instruments
Hot air oven
Beakers, Flasks, Petri dish, Slides, Syringes, Test tubes, Glycerine, Needles ,Oil, Paper Saliva ejector, Matrix Band
Ethylene oxide
Fabric, Bedding, Blanket, Clothing, Matteresses, Pillows, Disposable instruments , Instruments, Blades, Knives, Scalpels, Scissors ,Talcum powder, Books, Cups, plates , Plastics., Flask, Petridish, Tubes, Tubing, Rubber , catheters, Drains, Gloves ,Special items - Bronchoscope, Cystoscope, Heart lung machine
Glutaraldehyde
Orthodontic kits, Orthodontic pliers , Steel burrs, 3 in 1 syringe tips ,Cystoscope ,Endoscope
Filtration
Antibiotics, Serum, Vaccines
DISINFECTION AND STERILIZATION
• Sterilization is the best destruction or com removal_of all forms of micro organisms.
• Disinfection is the destruction of many microorganisms but usually the b spores.
• Antisepsis is the destruction or inhibition of microorganisms in living tissues thereby limiting or preventing the harmful effect of infection.
• Astatic Agent would only inhibit the growth of microorganisms (bacteriostatic, fungistatic, sporostatic).
• Acidal agent would kill the microorganism (bactericidal. virucidal, fungicidal)
• Sterilants are the chemicals which under controlled conditions can kill sporinQ bacteria.