NEET MDS Lessons
General Microbiology
ANTIGEN-ANTIBODY REACTIONS
I. NATURE OF ANTIGEN-ANTIBODY REACTIONS
A. Lock and Key Concept
The combining site of an antibody is located in the Fab portion of the molecule and is constructed from the hypervariable regions of the heavy and light chains. Antigen-antibody reactions is one of a key (i.e. the antigen) which fits into a lock (i.e. the antibody).
B. Non-covalent Bonds
The bonds that hold the antigen to the antibody combining site are all non-covalent in nature. These include hydrogen bonds, electrostatic bonds, Van der Waals forces and hydrophobic bonds.
C. Reversibility
Since antigen-antibody reactions occur via non-covalent bonds, they are by their nature reversible.
II. AFFINITY AND AVIDITY
A. Affinity
Antibody affinity is the strength of the reaction between a single antigenic determinant and a single combining site on the antibody. It is the sum of the attractive and repulsive forces operating between the antigenic determinant and the combining site of the antibody .
B. Avidity
Avidity is a measure of the overall strength of binding of an antigen with many antigenic determinants and multivalent antibodies. Avidity is influenced by both the valence of the antibody and the valence of the antigen. Avidity is more than the sum of the individual affinities.
III. SPECIFICITY AND CROSS REACTIVITY
A. Specificity
Specificity refers to the ability of an individual antibody combining site to react with only one antigenic determinant or the ability of a population of antibody molecules to react with only one antigen. In general, there is a high degree of specificity in antigen-antibody reactions.
B. Cross reactivity
Cross reactivity refers to the ability of an individual antibody combining site to react with more than one antigenic determinant or the ability of a population of antibody molecules to react with more than one antigen.
CELLS ORGANELLES
Cell parts:
Mitochondrion – double MB structure responsible for cellular metabolism – powerhouse of the cell
Nucleus – controls synthetic activities and stores genetic information
Ribosome – site of mRNA attachment and amino acid assembly, protein synthesis
Endoplasmic reticulum – functions in intracellular transportation
Gogli apparatus/complex – composed of membranous sacs – involved in production of large CHO molecules & lysosomes
Lysosome – organelle contains hydrolytic enzymes necessary for intracellular digestion
Membrane bag containing digestive enzymes
Cellular food digestion – lysosome MB fuses w/ MB of food vacuole & squirts the enzymes inside. Digested food diffuses through the vacuole MB to enter the cell to be used for energy or growth. Lysosome MB keeps the cell iself from being digested
-Involved mostly in cells that like to phagocytose
-Involved in autolytic and digestive processes
-Formed when the Golgi complex packages up an especially large vesicle of digestive enzyme proteins
Phagosome
– vesicle that forms around a particle (bacterial or other) w/in the phagocyte that engulfed it
- Then separates from the cell membrane bag & fuses w/ lysozome to receive contents
- This coupling forms phagolysosomes in which digestion of the engulfed particle occurs
Microbodies:
- Contain catalase
- Bounded by a single membrane bag
- Compartments specialized for specific metabolic pathways
- Similar in function to lysosomes, but are smaller & isolate metabolic reactions involving H2O2
- Two general families:
· Peroxisomes: transfer H2 to O2, producing H2O2 – generally not found in plants
· Glyoxysomes: common in fat-storing tissues of the germinating seeds of plants
¨ Contain enzymes that convert fats to sugar to make the energy stored in the oils of the seed available
Inclusions
– transitory, non-living metabolic byproducts found in the cytoplasm of the cell
- May appear as fat droplets, CHO accumulations, or engulfed foreign matter.
Immunofluorescence
This is precipitation or complement fixation tests. The technique can detect proteins at concentrations of around 1 µg protein per ml body fluid. Major disadvantage with this technique is frequent occurrence of nonspecific fluorescence in the tissues and other material.
The fluorescent dyes commonly used are fluorescein isothocyanate (FITC). These dyes exhibit fluorescence by absorbing UV light between 290 and 495 nm and emitting longer wavelength coloured light of 525 nm which gives shining appearance (fluorescence) to protein labelled with dye. Blue green (apple green) fluorescence is seen with FITC and orange red with rhodamine.
Enzyme Immunoassays
These are commonly called as enzyme linked immunosorbent assays or EL1SA. It is a simple and versatile technique which is as sensitive as radioimmunoassays. It is now the
technique for the detection of antigens, antibodies, hormones, toxins and viruses.
Identification of organisms by immunofluorescence
Type of agent Examples
Bacterial Neisseria gonorrhoeae, H. influenzae ,Strept pyogenes, Treponema pallidum
Viral Herpesvirus, Rabiesvirus, Epstein-Barr virus
Mycotic Candida albicans
Enzymatic activity results in a colour change which can be assessed visibly or quantified in a simple spectrophotometer.
Neutralization Test
These are basically of two types:
• Toxin neutralization
• Virus neutralization
In toxin neutralization homologous anti-bodies prevent the biological effect of toxin as observed in vivo in experimental animals (e.g. detection of toxin of Clostridia and Corynebacterium diphthenae) or by in vitro method (e.g. Nagler’s method).
In virus neutralization test various methods are available by which identity of virus can be established as well as antibody against a virus can be estimated.
Precipitation Reaction
This reaction takes place only when antigen is in soluble form. Such an antigen when
comes in contact with specific antibody in a suitable medium results into formation of an insoluble complex which precipitates. This precipitate usually settles down at the bottom of the tube. If it fails to sediment and remains suspended as floccules the reaction is known as flocculation. Precipitation also requires optimal concentration of NaCl, suitable temperature and appropriate pH.
Zone Phenomenon
Precipitation occurs most rapidly and abundantly when antigen and antibody are in optimal proportions or equivalent ratio. This is also known as zone of equivalence. When antibody is in great excess, lot of antibody remains uncombined. This is called zone of antibody excess or prozone. Similarly a zone of antigen excess occurs in which all antibody has combined with antigen and additional uncombined antigen is present.
Applications of Precipitation Reactions
Both qualitative determination as well as quantitative estimation of antigen and antibody can be performed with precipitation tests. Detection of antigens has been found to be more sensitive.
Agglutination
In agglutination reaction the antigen is a part of the surface of some particulate material such as erythrocyte, bacterium or an inorganic particle e.g. polystyrene latex which has been coated with antigen. Antibody added to a suspension of such particles combines with the surface antigen and links them together to form clearly visible aggregate which is called as agglutination.
Application of precipitation reactions
Precipitation reaction Example
Ring test Typing of streptococci, Typing of pneumococci
Slide test (flocculation) VDRL test
Tube test (flocculation) Kahn test
Immunodiffusion Eleks test
Immunoelectrophoresis Detection Of HBsAg, Cryptococcal antigen in CSF
Types of microscopy used in bacteriology
Light microscopy
Phase contrast microscopy
Fluorescence microscopy
Darkfield microscopy
Transmission electron microscopy
Scanning electron microscopy
Fluorescent microscopy in which ultraviolet rays are used to examine cells after treatment with fluorescent days.
Phase contrast microscope enhances the refractive index differences of the cell components. This microscopy can be used to reveal details of the internal structures as well as capsules, endospores and motility
Electron microscope The resolving power is more than 200 times that of light microscope.
Measurement of Bacterial of Growth
A convenient method is to determine turbidity by photoelectric colorimeter or spectrophotometer.
The cell number can be counted as total cell number as well as viable count. Viable Count Viable number of bacteria can be counted by inoculating the suspension onto solid growth medium and counting the number of colonies. Since each colony is the end product of one viable bacterium, their count gives the number of viable bacteria in the suspension.
Total number of bacteria can be ascertained in specially designed chambers such as Coulter counter.