NEET MDS Lessons
General Microbiology
CROSS INFECTION AND STERLIZATION IN DENTISTRY
Cross infection is defined as the transmission of infectious agents amongst patients and staff with in hospital environment.
Routes of Infection
Two routes are important : transdermal and respiratory.
In transdermal route microorganisms enter the tissues of the recipient by means of injection through intact skin or mucosa (usually due to an accident involving a sharp instrument) or via defects in the skin e.g. recent cuts and abrasions.
Microorganisms causing cross infection in dentistry
Transmitted through skin
Bacteria : Treponema pallidum, Staphylococcus aureus
Viruses :Hepatitis virus, HIV ,Herpes simplex virus, Mumps, Measles , Epstein-Barr virus
Fungi: Dermatomycoses, Candidiasis,
Transmitted through aerosols
Bordetella pertussis, Myco.tuberculosis, Streptococcus pyogenes, Influenza virus
Rhinovirus, Rubella
Precipitation Reaction
This reaction takes place only when antigen is in soluble form. Such an antigen when
comes in contact with specific antibody in a suitable medium results into formation of an insoluble complex which precipitates. This precipitate usually settles down at the bottom of the tube. If it fails to sediment and remains suspended as floccules the reaction is known as flocculation. Precipitation also requires optimal concentration of NaCl, suitable temperature and appropriate pH.
Zone Phenomenon
Precipitation occurs most rapidly and abundantly when antigen and antibody are in optimal proportions or equivalent ratio. This is also known as zone of equivalence. When antibody is in great excess, lot of antibody remains uncombined. This is called zone of antibody excess or prozone. Similarly a zone of antigen excess occurs in which all antibody has combined with antigen and additional uncombined antigen is present.
Applications of Precipitation Reactions
Both qualitative determination as well as quantitative estimation of antigen and antibody can be performed with precipitation tests. Detection of antigens has been found to be more sensitive.
Agglutination
In agglutination reaction the antigen is a part of the surface of some particulate material such as erythrocyte, bacterium or an inorganic particle e.g. polystyrene latex which has been coated with antigen. Antibody added to a suspension of such particles combines with the surface antigen and links them together to form clearly visible aggregate which is called as agglutination.
Application of precipitation reactions
Precipitation reaction Example
Ring test Typing of streptococci, Typing of pneumococci
Slide test (flocculation) VDRL test
Tube test (flocculation) Kahn test
Immunodiffusion Eleks test
Immunoelectrophoresis Detection Of HBsAg, Cryptococcal antigen in CSF
Types of microscopy used in bacteriology
Light microscopy
Phase contrast microscopy
Fluorescence microscopy
Darkfield microscopy
Transmission electron microscopy
Scanning electron microscopy
Fluorescent microscopy in which ultraviolet rays are used to examine cells after treatment with fluorescent days.
Phase contrast microscope enhances the refractive index differences of the cell components. This microscopy can be used to reveal details of the internal structures as well as capsules, endospores and motility
Electron microscope The resolving power is more than 200 times that of light microscope.
NUTRITION OF BACTERIA
Nutrients
Chemoheterotrophs: nutrient source is organic material
Bacteria also requires a source of minerals.
Oxygen
On this basis bacteria have been divided into four groups.
Obligate Anaerobes: These grow only under conditions of high reducing intensity. These bacteria catalase peroxidase, superoxide dismutase and cytochrome systems
Clostridium and Bacteroides are important examples.
Facultalive Anaerobes. These can grow under both aerobic and anaerobic conditions and include members of family enterobacteriaceae and many other bacteria.
Obligatory Aerobes. These cannot grow unless oxygen is present in the medium. Pseudomonas belong to this group.
Microaerophillic. These organisms can grow under conditions with low oxygen tension. Clostridium tetani is an important example.
The strict anaerobes are unable to grow unless Eh is as low as 0.2 volt
Temperature
• On the basis of temperature requirements, three groups of bacteria are recognised.
• Psychrophilic : Growth in the range of —5 to 30°C with an optimum of 10-20
• Mesophillic : bacteria grow best at 20-40°C with a range of 10-45°C.
• Medically important bacteria belong to this group
• Myco. leprae is one such important example and it can grow only at reduced temperature such as footpad of mouse
• Thermophillic organisms prefer high temperature (25-80°C) for growth and yield maximum growth at 50-60°C
pH : Most pathogenic bacteria require a pH of 7.2-7.6 for their own optimal growth.
MICROBIAL VIRULENCE FACTORS
Microbial virulence factors are gene products required for a microbial pathogen to establish itself in the host. These gene products are located on the bacterial chromosome, or on mobile genetic elements, such as plasmids or transposons.
Primary pathogens express virulence factors that allow them to cause disease in the normal host.
Opportunistic pathogens are environmental organisms or normal flora that lack the means to overcome normal host defense mechanisms. They cause disease only when the normal host defenses are breached or deficient.
Virulence factors can be divided into several categories.
Skin - Propionibacterium acnes, Staphlococcus epidermis , diptheroids; transient colonization by Staphlococcus
aureus
Oral cavity - Viridans Streptococci, Branhamella species, Prevotella melaninogenicus, Actinomyces species, Peptostreptococcus species, other anaerobes
Nasopharynx Oral organisms; transient colonization by S. pneumoniae, Haemophilus species, N. meningitidis
Stomach Rapidly becomes sterile
Small intestine Scant
Colon - Bacteroides species, Clostridium species, Fusobacterium species, E. coli, Proteus species, Pseudomonas aeruginosa, Enterococcus species, other bacteria and yeasts
Vagina - Childbearing years:Lactobacillus species, yeasts, Streptococcus species
Prepuberty / Postmenopause: colonic and skin flora
A. Enzyme production can be of several types depending on the needs of the organism, its requirements for survival, and the local environment.
1. Hyaluronidase breaks down hyaluronic acid to aid in the digestion of tissue.
2. Protease digests proteins to enhance the spread of infections.
3. Coagulase allows coagulation of fibrinogen to clot plasma.
4. Collagenase breaks down collagen (connective tissues).
B. Toxins
1. Exotoxins are heat-labile proteins with specific enzymatic activities produced by many Gram-positive and Gram-negative organisms. Exotoxins are released extracellularly and are often the sole cause of disease.
a. Some toxins have several domains with discrete biological functions that confer maximal toxicity. An example is A-B exotoxin, where the B subunit binds to host tissue cell glycoproteins and the A subunit enzymatically attacks a susceptible target.
b. Many toxins are ADP-ribosylating toxins
2. Endotoxin is the heat-stable lipopolysaccharide moiety found in the outer membrane of Gram-negative organisms. when released by cell lysls, the lipid A portion of lipopolysaccharide can induce septic shock characterized by fever, acidosis, hypotension, complement consumption, and disseminated intravascular coagulation (DIC).
C. Surface components
may protect the organism from immune responses such as phagocytosis or aid in tissue invasion. For example, the polysaccharide capsules of H. influenzae type b and the acidic polysaccharide capsule of Streptococcus pneumoniae interfere with phagocytosis. Other surface proteins, such as adhesins or filamentous appendages (fimbriae, pili), are involved in adherence of invading microorganisms to cells of the host.
NORMAL MICROBIAL FLORA
A. Properties. Normal microbial flora describes the population of microorganisms that usually reside in the body. The microbiological flora can be defined as either
1) Resident flora - A relatively fixed population that will repopulate if disturbed,
2) Transient flora - that are derived from the local environment. These microbes usually reside in the body without invasion and can
even prevent infection by more pathogenic organisms, a phenomenon known as bacterial interference.
The flora have commensal functions such as vitamin K synthesis. However, they may cause invasive disease in immunocompromised hosts or if displaced from their normal area.
B. Location. Microbial flora differ in composition depending on their anatomical locations and microenvironments. The distribution of normal microbial flora.
NON-SPECIFIC KILLER CELLS
Several different cells including NK and LAK cells, K cells, activated macrophages and eosinophils are capable of killing foreign and altered self target cells in a non-specific manner. These cells play an important role in the innate immune system.
A. NK and LAK cells
Natural killer (NK) cells are also known as large granular lymphocytes (LGL) because they resemble lymphocytes in their morphology, except that they are slightly larger and have numerous granules.
NK cells can be identified by the presence of CD56 and CD16 and a lack of CD3 cell surface markers.
NK cells are capable of killing virus-infected and malignant target cells but they are relatively inefficient in doing so.
However, upon exposure to IL-2 and IFN-gamma, NK cells become lymphokine-activated killer (LAK) cells, which are capable of killing malignant cells.
Continued exposure to IL-2 and IFN-gamma enables the LAK cells to kill transformed as well as malignant cells. LAK cell therapy is one approach for the treatment of malignancies.
NK and LAK cells have two kinds of receptors on their surface – a killer activating receptor (KAR) and a killer inhibiting receptor (KIR).
When the KAR encounters its ligand, a killer activating ligand (KAL) on the target cell the NK or LAK cells are capable of killing the target. However, if the KIR also binds to its ligand then killing is inhibited even if KAR binds to KAL.
The ligands for KIR are MHC-class I molecules. Thus, if a target cell expresses class I MHC molecules it will not be killed by NK or LAK cells even if the target also has a KAL which could bind to KAR.
Normal cells constitutively express MHC class I molecules on their surface, however, virus infected and malignant cells down regulate expression of class I MHC. Thus, NK and LAK cells selectively kill virus-infected and malignant cells while sparing normal cells.
B. K cells
Killer (K) cells are not a morphologically distinct type of cell. Rather a K cell is any cell that mediates antibody-dependent cellular cytotoxicity (ADCC).
In ADCC antibody acts as a link to bring the K cell and the target cell together to allow killing to occur. K cells have on their surface an Fc receptor for antibody and thus they can recognize, bind and kill target cells coated with antibody.
Killer cells which have Fc receptors include NK, LAK, and macrophages which have an Fc receptor for IgG antibodies and eosinophils which have an Fc receptor for IgE antibodies.