NEET MDS Lessons
General Microbiology
Test for Antigen - Antibody Reactions
Antigens are those substance that stimulates the production of antibodies which, when enter into the body it reacts specifically in a manner that are clearly visible.
Some antigens may not induce antibody production, but instead creates immunological tolerance.
An antigen introduced into the body produces only specific antibodies and will react with only those specific antigens.
These antibodies appear in the serum and tissue fluids. All antibodies are considered as immunoglobulin. They are mainly of five classes; IgG, IgA, IgM, IgD and IgE.
Antigen- antibody reactions are known as serological reactions and are used as serological diagnostic tests for the identification of infectious diseases.
The reaction occurs mainly in three stages;
1. The initial interaction between the antigen and antibody, which produces no visible effects. It is a reversible and rapid reaction.
2. The secondary stage leads to the demonstration proceedings, such as precipitation, agglutination, etc.
3. The tertiary reaction follows the neutralization or destruction of injurious antigens. These results in clinical allergy and other immunological diseases.
There are certain characteristics for antigen-antibody reactions;
1. Reaction is specific.
2. The whole molecules participate in the reaction, and not just a part of it.
3. No denaturation of antigen or antibody occurs during the reaction.
4. The combination usually occurs at the surface.
5. The combination is firm, but reversible
6. Agglutinins formed after agglutination usually are formed by both antigen and antibody together.
7. They can combine in varying proportions.
Measurement of antigen and antibody are made in terms of mass or as units or titre.
Serological reactions include;
1. Precipitation reaction
a soluble antigen combining with the specific antibody in the presence of electrolytes at a suitable temperature and pH forming insoluble precipitins. Commonly used tests are ring test, slide test, tube test, immunodiffusion, etc.
Radial Immunodiffusion
In radial immunodiffusion antibody is incorporated into the agar gel as it is poured and different dilutions of the antigen are placed in holes punched into the agar. As the antigen diffuses into the gel, it reacts with the antibody and when the equivalence point is reached a ring of precipitation is formed .
This test is commonly used in the clinical laboratory for the determination of immunoglobulin levels in patient samples.
Immunoelectrophoresis
In immunoelectrophoresis, a complex mixture of antigens is placed in a well punched out of an agar gel and the antigens are electrophoresed so that the antigen are separated according to their charge. After electrophoresis, a trough is cut in the gel and antibodies are added. As the antibodies diffuse into the agar, precipitin lines are produced in the equivalence zone when an antigen/antibody reaction occurs .
This tests is used for the qualitative analysis of complex mixtures of antigens
This test can also be used to evaluate purity of isolated serum proteins.
Countercurrent electrophoresis
In this test the antigen and antibody are placed in wells punched out of an agar gel and the antigen and antibody are electrophoresed into each other where they form a precipitation line.
2. Agglutination reaction
when a particulate antigen is mixed with its antibody in the presence of electrolytes at a suitable temperature and pH, the particles are clumped or agglutinated. When the antigen is an erythrocyte the term hemagglutination is used.
Applications of agglutination tests
i. Determination of blood types or antibodies to blood group antigens.
ii. To assess bacterial infections
e.g. A rise in titer of an antibody to a particular bacterium indicates an infection with that bacterial type. N.B. a fourfold rise in titer is generally taken as a significant rise in antibody titer.
Passive hemagglutination
The agglutination test only works with particulate antigens. However, it is possible to coat erythrocytes with a soluble antigen (e.g. viral antigen, a polysaccharide or a hapten) and use the coated red blood cells in an agglutination test for antibody to the soluble antigen . This is called passive hemagglutination.
The test is performed just like the agglutination test.
Applications include detection of antibodies to soluble antigens and detection of antibodies to viral antigens.
Coomb's Test (Antiglobulin Test)
DIRECT ANTIGLOBULIN TEST (DAT)
The DAT is used to detect IgG or C3 bound to the surface of the red cell. In patients with hemolysis, the DAT is useful in determining whether there is an immune etiology.
A positive DAT can occur without hemolysis
Immune causes of hemolysis including autoimmune hemolytic anemias, drug induced hemolysis, and delayed or acute hemolytic transfusion reactions are characterized by a positive DAT.
INDIRECT ANTIGLOBULIN TEST (IAT)
The IAT (antibody screen) is performed by incubating patient serum with reagent screening red cells for approximately 20 minutes and then observing for agglutination. If the antibody screen is positive, additional testing is required to determine the specificity of the antibody.
The IAT is used to detect red cell antibodies in patient serum. Approximately 5% of patients have a positive IAT due to IgG antibodies, IgM antibodies, or both.
3. Complement fixation test (CFT)
the ability of antigen antibody complexes to fix complement is made use in this test. Complement is something which takes part in any immunological reaction and absorbed during the combining of antigen with its specific antibody.
The best example of CFT is the Wassermann reaction done for the detection of Syphilis.
4. Neutralization test
different types of these are available. Virus neutralization, toxin neutralization, etc. are some of its kind.
5. Opsonization
this makes use of the determination of opsonic index, which is the ratio of the phagocytic activity of patient’s blood to the phagocytic activity of the normal patient’s for a given bacterium.
6. Immunfluorescence
the method of labeling the antibodies with fluorescent dyes and using them for the detection of antigens in tissues.
7. Radioimmunoassay (RIA)
is a competitive binding radioisotopes and enzymes are used as labels to conjugate with antigens or antibodies.
8. Enzyme Immuno Assay (EIA)
the assays based on the measurement of enzyme labeled antigen or antibody. The most common example is ELISA used to detect HIV.
9. Immunoelectroblot
it uses the sensitivity of Enzyme immunoassay with a greater specificity. Example is Western blot done for the serodiagnosis of HIV infection.
PHYSICAL AGENTS
Heat occupies the most important place as a physical agent.
Moist Heat : This is heating in the presence of water and can be employed in the following ways:
Temperature below 100°C: This includes holder method of Pasteurization where 60°C for 30 minutes is employed for sterilization and in its flash modification where in objects are subjected to a temperature of 71.1°C for 15 seconds. This method does not destroy spores.
Temperatures Around 100°C : Tyndallization is an example of this methodology in which steaming of the object is done for 30 minutes on each of three consecutive days. Spores which survive the heating process would germinate before the next thermal exposure and would then be killed.
Temperatures Above 100°C : Dry saturated steam acts as an excellent agent for sterilization. Autoclaves have been designed on the principles of moist heat.
Time-temperature relationship in heat sterilization
Moist heat (autoclaving)
121°C 15 minutes
126°C 10 minutes
134 C 3 minutes
Dry heat
>160°C >120 minutes
>170°C >60minutes
>180°C >30 minutes
Mechanism of microbial inactivation
The autoclaving is in use for the sterilization of many ophthalmic and parentral products. surgical dressings, rubber gloves, bacteriological media as well a of lab and hospital reusable goods.
Dry Heat: Less efficient, bacterial spores are most resistant. Spores may require a temperature of 140° C for three hours to get killed.
Dry heat sterilization is usually carried out by flaming as is done in microbiology laboratory to sterilize the inoculating loop and in hot air ovens in which a number of time-temperature combinations can be used. It is essential that hot air should circulate between the objects to be sterilized. Microbial inactivation by dry heat is primarily an oxidation process.
Dry heat is employed for sterilization of glassware glass syringes, oils and oily injections as well as metal instruments. -
Indicators of Sterilization:
These determine the efficacy of heat sterilization and can be in the form of spores of Bacillus stearothermophilus (killed at 121C in 12 minutes) or in the form of chemical indicators, autoclave tapes and thermocouples.
Ionizing Radiations
Ionizing radiations include X-rays, gamma rays and beta rays, and these induce defects in the microbial DNA synthesis is inhibited resulting in cell death. Spores are more resistant to ionizing radiations than nonsporulating bacteria.
The ionizing radiations are used for the sterilization of single use disposable medical items.
Mechanism of microbial inactivation by moist heat
Bacterial spores
• Denaturation of spore_epzymes
• Impairment of germination
• Damage to cell membrane
• Increased sensitivity to inhibitory agents
• Structural damage
• Damage to chromosome
Nonsporulating bacteria
• Damage to cytoplasmic membrane
• Breakdown of RNA
• Coagulation of proteins
• Damage to bacterial chromosome
Ultraviolet Radiations :
wave length 240-280 nm have been found to be most efficient in sterilizing. Bacterial spores are more resistant to U.V. rays than the vegetative forms. Even viruses are sometimes more resistant than vegetative bacteria.
Mechanism of Action :
Exposure to UV rays results in the formation of purine and pyrimidine diamers between adjacent molecules in the same strand of DNA. This results into noncoding lesions in DNA and bacterial death.
Used to disinfect drinking water, obtaining pyrogen free water, air disinfection (especially in safety laboratories, hospitals, operation theatres) and in places where dangerous microorganisms are being handled.
Filteration
Type of Filters
Various types of filters that are available are /
Unglazed ceramic filter (Chamberland and Doulton filters)
Asbestos filters (Seitz, Carlson and Sterimat filters)
Sintered glass filters
Membrane filters
Membrane filters are widely used now a days. Made up of cellulose ester and are most suitable for preparing_sterile solutions. The range of pore size in which these are available is 0.05-12 µm whereas the required pore size for sterlization is in range of 0.2-0.22 p.m.
COMPLEMENT
The complement system primarily serves to fight bacterial infections.
The complement system can be activated by at least three separate pathways.
1) alternative pathway -
- The alternative pathway of complement activation starts with the spontaneous hydroysis of an internal thioester bond in the plasma complement component C3 to result in C3(H2O).
- The smaller cleavage products C3a, C4a, C5a, sometimes called "anaphylatoxins", act as phagocytes, they cause mast cell degranulation and enhance vessel permeability, thereby facilitating access of plasma proteins and leukocytes to the site of infection
- alternative pathway provides a means of non-specific resistance against infection without the participation of antibodies and hence provides a first line of defense against a number of infectious agents.
2) Lecithin Pathway
The lectin pathway of complement activation exploits the fact that many bacterial surfaces contain mannose sugar molecules in a characteristic spacing. The oligomeric plasma protein mannan-binding lectin (MBL; lectins are proteins binding sugars) binds to such a pattern of mannose moieties, activating proteases MASP-1 and MASP-2 (MASP=MBL activated serine protease, similar in structure to C1r and C1s). These, by cleaving C4 and C2, generate a second type of C3 convertase consisting of C4b and C2b, with ensuing events identical to those of the alternative pathway.
3) classical pathway
The classical pathway usually starts with antigen-bound antibodies recruiting the C1q component, followed by binding and sequential activation of C1r and C1s serine proteases. C1s cleaves C4 and C2, with C4b and C2b forming the C3 convertase of the classical pathway. Yet, this pathway can also be activated in the absence of antibodies by the plasma protein CRP (C-reactive protein), which binds to bacterial surfaces and is able to activate C1q.
Pharmacology cross reference: humanized monoclonal antibody Eculizumab binds to complement component C5, inhibiting its cleavage and preventing activation of the lytic pathway. This is desirable when unwanted complement activation causes hemolysis, as in paroxysmal nocturnal hemoglobinuria or in some forms of hemolytic uremic syndrome. For the lytic pathway's importance in fighting meningococcal infections, Eculizumab treatment increases the risk of these infections, which may be prevented by previous vaccination.
BIOLOGICALLY ACTIVE PRODUCTS OF COMPLEMENT ACTIVATION
Activation of complement results in the production of several biologically active molecules which contribute to resistance, anaphylaxis and inflammation.
Kinin production
C2b generated during the classical pathway of C activation is a prokinin which becomes biologically active following enzymatic alteration by plasmin. Excess C2b production is prevented by limiting C2 activation by C1 inhibitor (C1-INH) also known as serpin which displaces C1rs from the C1qrs complex (Figure 10). A genetic deficiency of C1-INH results in an overproduction of C2b and is the cause of hereditary angioneurotic edema. This condition can be treated with Danazol which promotes C1-INH production or with ε-amino caproic acid which decreases plasmin activity.
Anaphylotoxins
C4a, C3a and C5a (in increasing order of activity) are all anaphylotoxins which cause basophil/mast cell degranulation and smooth muscle contraction. Undesirable effects of these peptides are controlled by carboxypeptidase B (C3a-INA).
Chemotactic Factors
C5a and MAC (C5b67) are both chemotactic. C5a is also a potent activator of neutrophils, basophils and macrophages and causes induction of adhesion molecules on vascular endothelial cells.
Opsonins
C3b and C4b in the surface of microorganisms attach to C-receptor (CR1) on phagocytic cells and promote phagocytosis.
Other Biologically active products of C activation
Degradation products of C3 (iC3b, C3d and C3e) also bind to different cells by distinct receptors and modulate their functions.
Immunofluorescence
This is precipitation or complement fixation tests. The technique can detect proteins at concentrations of around 1 µg protein per ml body fluid. Major disadvantage with this technique is frequent occurrence of nonspecific fluorescence in the tissues and other material.
The fluorescent dyes commonly used are fluorescein isothocyanate (FITC). These dyes exhibit fluorescence by absorbing UV light between 290 and 495 nm and emitting longer wavelength coloured light of 525 nm which gives shining appearance (fluorescence) to protein labelled with dye. Blue green (apple green) fluorescence is seen with FITC and orange red with rhodamine.
Enzyme Immunoassays
These are commonly called as enzyme linked immunosorbent assays or EL1SA. It is a simple and versatile technique which is as sensitive as radioimmunoassays. It is now the
technique for the detection of antigens, antibodies, hormones, toxins and viruses.
Identification of organisms by immunofluorescence
Type of agent Examples
Bacterial Neisseria gonorrhoeae, H. influenzae ,Strept pyogenes, Treponema pallidum
Viral Herpesvirus, Rabiesvirus, Epstein-Barr virus
Mycotic Candida albicans
Enzymatic activity results in a colour change which can be assessed visibly or quantified in a simple spectrophotometer.
BACTERIAL GROWTH
The conversion of a parental cell into two daughters constitutes the bacterial life cycle and the time taken to complete cell cycle is known as generation_time. This is around 15 minutes in vegetative bacteria except mycobacteria.
Bacterial Growth Curve
In the presence of fresh growth medium a bacterium shows following four phases;
The Lag phase -> The Log phase -> The Stationary phase -> The Decline phase
The Lag Phase : short duration , bacteria adapt themselves to new environment
The Log Phase (Exponential Phase) : Regular growth of bacteria occurs The morphology of bacteria is best developed in this phase and organisms manifest typical biochemical characters.
- Most of the cidal Abx work best in this phase
• i.e. Ampicillin
- Best phase for staining bacterial cultures
Chemostat and turbidostat are examples of technique by which this phase can be prolonged.
Stationary Phase : balanced growth and cell division cannot be sustained. The total cell Count remains static till lysis supervenes, but the viable cell count quickly declines.
Decline Phase: death phase. Dyeing bacteria exceed the dividing bacterias.
THE PLASMIDS
The extrachromosomal genetic elements, called as plasmids are autonomously replicating , cyclic ,double stranded DNA molecules which are distinct from the cellular chromosome
Classification
Plasmids can be broadly classified as conjugative and nonconjugative.
Conjugative plasmids are large and self-transmissible i.e. they have an apparatus through which they can mediate their own transfer to another cell after coming in contact with the same. Example: RF and certain bacteriocinogen plasmids.
Nonconjugative plasmids are small in size and can be mobilised for transfer into another cell only through the help of a conjugative plasmid. To this group belong some ‘r’ determinants and few bacteriocinogenic plasmids. Plasmids can also be transferred without cell contact by the process of transfection.
Properties of plasmids
Double stranded DNA , Autonomously replicate in host cell, Plasmd specific, Free DNA is transferred b transfection
Significance of Plasmids :The spread of resistance to antibiotics is one such well known example. These also play an important role in the geochemical cycle by spreading genes for the degradation of complex organic compounds.
Neutralization Test
These are basically of two types:
• Toxin neutralization
• Virus neutralization
In toxin neutralization homologous anti-bodies prevent the biological effect of toxin as observed in vivo in experimental animals (e.g. detection of toxin of Clostridia and Corynebacterium diphthenae) or by in vitro method (e.g. Nagler’s method).
In virus neutralization test various methods are available by which identity of virus can be established as well as antibody against a virus can be estimated.