NEET MDS Lessons
General Microbiology
PHAGOCYTOSIS AND INTRACELLULAR KILLING
A. Phagocytic cells
1. Neutrophiles/Polymorphonuclear cells
PMNs are motile phagocytic cells that have lobed nuclei. They can be identified by their characteristic nucleus or by an antigen present on the cell surface called CD66. They contain two kinds of granules the contents of which are involved in the antimicrobial properties of these cells.
The second type of granule found in more mature PMNs is the secondary or specific granule. These contain lysozyme, NADPH oxidase components, which are involved in the generation of toxic oxygen products, and characteristically lactoferrin, an iron chelating protein and B12-binding protein.
2. Monocytes/Macrophages
Macrophages are phagocytic cells . They can be identified morphologically or by the presence of the CD14 cell surface marker.
B. Response of phagocytes to infection
Circulating PMNs and monocytes respond to danger (SOS) signals generated at the site of an infection. SOS signals include N-formyl-methionine containing peptides released by bacteria, clotting system peptides, complement products and cytokines released from tissue macrophages that have encountered bacteria in tissue.
Some of the SOS signals stimulate endothelial cells near the site of the infection to express cell adhesion molecules such as ICAM-1 and selectins which bind to components on the surface of phagocytic cells and cause the phagocytes to adhere to the endothelium.
Vasodilators produced at the site of infection cause the junctions between endothelial cells to loosen and the phagocytes then cross the endothelial barrier by “squeezing” between the endothelial cells in a process called diapedesis.
Once in the tissue spaces some of the SOS signals attract phagocytes to the infection site by chemotaxis (movement toward an increasing chemical gradient). The SOS signals also activate the phagocytes, which results in increased phagocytosis and intracellular killing of the invading organisms.
C. Initiation of Phagocytosis
Phagocytic cells have a variety of receptors on their cell membranes through which infectious agents bind to the cells. These include:
1. Fc receptors – Bacteria with IgG antibody on their surface have the Fc region exposed and this part of the Ig molecule can bind to the receptor on phagocytes. Binding to the Fc receptor requires prior interaction of the antibody with an antigen. Binding of IgG-coated bacteria to Fc receptors results in enhanced phagocytosis and activation of the metabolic activity of phagocytes (respiratory burst).
2. Complement receptors – Phagocytic cells have a receptor for the 3rd component of complement, C3b. Binding of C3b-coated bacteria to this receptor also results in enhanced phagocytosis and stimulation of the respiratory burst.
3. Scavenger receptors – Scavenger receptors bind a wide variety of polyanions on bacterial surfaces resulting in phagocytosis of bacteria.
4. Toll-like receptors – Phagocytes have a variety of Toll-like receptors (Pattern Recognition Receptors or PRRs) which recognize broad molecular patterns called PAMPs (pathogen associated molecular patterns) on infectious agents. Binding of infectious agents via Toll-like receptors results in phagocytosis and the release of inflammatory cytokines (IL-1, TNF-alpha and IL-6) by the phagocytes.
D. Phagocytosis
The pseudopods eventually surround the bacterium and engulf it, and the bacterium is enclosed in a phagosome. During phagocytosis the granules or lysosomes of the phagocyte fuse with the phagosome and empty their contents. The result is a bacterium engulfed in a phagolysosome which contains the contents of the granules or lysosomes.
E. Respiratory burst and intracellular killing
During phagocytosis there is an increase in glucose and oxygen consumption which is referred to as the respiratory burst. The consequence of the respiratory burst is that a number of oxygen-containing compounds are produced which kill the bacteria being phagocytosed. This is referred to as oxygen-dependent intracellular killing. In addition, bacteria can be killed by pre-formed substances released from granules or lysosomes when they fuse with the phagosome. This is referred to as oxygen-independent intracellular killing.
1. Oxygen-dependent myeloperoxidase-independent intracellular killing
During phagocytosis glucose is metabolized via the pentose monophosphate shunt and NADPH is formed. Cytochrome B which was part of the specific granule combines with the plasma membrane NADPH oxidase and activates it. The activated NADPH oxidase uses oxygen to oxidize the NADPH. The result is the production of superoxide anion. Some of the superoxide anion is converted to H2O2 and singlet oxygen by superoxide dismutase. In addition, superoxide anion can react with H2O2 resulting in the formation of hydroxyl radical and more singlet oxygen. The result of all of these reactions is the production of the toxic oxygen compounds superoxide anion (O2-), H2O2, singlet oxygen (1O2) and hydroxyl radical (OH•).
2. Oxygen-dependent myeloperoxidase-dependent intracellular killing
As the azurophilic granules fuse with the phagosome, myeloperoxidase is released into the phagolysosome. Myeloperoxidase utilizes H2O2 and halide ions (usually Cl-) to produce hypochlorite, a highly toxic substance. Some of the hypochlorite can spontaneously break down to yield singlet oxygen. The result of these reactions is the production of toxic hypochlorite (OCl-) and singlet oxygen (1O2).
3. Detoxification reactions
PMNs and macrophages have means to protect themselves from the toxic oxygen intermediates. These reactions involve the dismutation of superoxide anion to hydrogen peroxide by superoxide dismutase and the conversion of hydrogen peroxide to water by catalase.
4. Oxygen-independent intracellular killing
In addition to the oxygen-dependent mechanisms of killing there are also oxygen–independent killing mechanisms in phagocytes: cationic proteins (cathepsin) released into the phagolysosome can damage bacterial membranes; lysozyme breaks down bacterial cell walls; lactoferrin chelates iron, which deprives bacteria of this required nutrient; hydrolytic enzymes break down bacterial proteins. Thus, even patients who have defects in the oxygen-dependent killing pathways are able to kill bacteria. However, since the oxygen-dependent mechanisms are much more efficient in killing, patients with defects in these pathways are more susceptible and get more serious infections.
Application of agglutination reactions
Agglutination reaction Example
Tube agglutination -> Widal test, Weil Felix reaction, Standard tube test for brucellosis
Slide agglutination -> Typing of pneumococci,Diagnosis of Salmonella,Diagnosis of Shigella
Agglutination Absorption test -> Salmonella diagnosis
Coagglutination -> Grouping of streptococci, Identification of gonococci, Detection of Haemophilus, Antigen in CSF
Passive agglutination
Latex agglutination Detection of HBs Ag, ASO, CRP
Radioimmunoassays (RIA)
It is an extremely sensitive technique in which antibody or antigen is labelled with a radioactive material. The amount of radioactive material in the antigen-antibody complex can be measured with which concentration of antigen or antibody can be assayed. After the reaction ‘free’ and ‘bound’ fractions of antigen are separated and their radioactivity-measured.
NON-SPECIFIC KILLER CELLS
Several different cells including NK and LAK cells, K cells, activated macrophages and eosinophils are capable of killing foreign and altered self target cells in a non-specific manner. These cells play an important role in the innate immune system.
A. NK and LAK cells
Natural killer (NK) cells are also known as large granular lymphocytes (LGL) because they resemble lymphocytes in their morphology, except that they are slightly larger and have numerous granules.
NK cells can be identified by the presence of CD56 and CD16 and a lack of CD3 cell surface markers.
NK cells are capable of killing virus-infected and malignant target cells but they are relatively inefficient in doing so.
However, upon exposure to IL-2 and IFN-gamma, NK cells become lymphokine-activated killer (LAK) cells, which are capable of killing malignant cells.
Continued exposure to IL-2 and IFN-gamma enables the LAK cells to kill transformed as well as malignant cells. LAK cell therapy is one approach for the treatment of malignancies.
NK and LAK cells have two kinds of receptors on their surface – a killer activating receptor (KAR) and a killer inhibiting receptor (KIR).
When the KAR encounters its ligand, a killer activating ligand (KAL) on the target cell the NK or LAK cells are capable of killing the target. However, if the KIR also binds to its ligand then killing is inhibited even if KAR binds to KAL.
The ligands for KIR are MHC-class I molecules. Thus, if a target cell expresses class I MHC molecules it will not be killed by NK or LAK cells even if the target also has a KAL which could bind to KAR.
Normal cells constitutively express MHC class I molecules on their surface, however, virus infected and malignant cells down regulate expression of class I MHC. Thus, NK and LAK cells selectively kill virus-infected and malignant cells while sparing normal cells.
B. K cells
Killer (K) cells are not a morphologically distinct type of cell. Rather a K cell is any cell that mediates antibody-dependent cellular cytotoxicity (ADCC).
In ADCC antibody acts as a link to bring the K cell and the target cell together to allow killing to occur. K cells have on their surface an Fc receptor for antibody and thus they can recognize, bind and kill target cells coated with antibody.
Killer cells which have Fc receptors include NK, LAK, and macrophages which have an Fc receptor for IgG antibodies and eosinophils which have an Fc receptor for IgE antibodies.
BACTERIAL GROWTH
The conversion of a parental cell into two daughters constitutes the bacterial life cycle and the time taken to complete cell cycle is known as generation_time. This is around 15 minutes in vegetative bacteria except mycobacteria.
Bacterial Growth Curve
In the presence of fresh growth medium a bacterium shows following four phases;
The Lag phase -> The Log phase -> The Stationary phase -> The Decline phase
The Lag Phase : short duration , bacteria adapt themselves to new environment
The Log Phase (Exponential Phase) : Regular growth of bacteria occurs The morphology of bacteria is best developed in this phase and organisms manifest typical biochemical characters.
- Most of the cidal Abx work best in this phase
• i.e. Ampicillin
- Best phase for staining bacterial cultures
Chemostat and turbidostat are examples of technique by which this phase can be prolonged.
Stationary Phase : balanced growth and cell division cannot be sustained. The total cell Count remains static till lysis supervenes, but the viable cell count quickly declines.
Decline Phase: death phase. Dyeing bacteria exceed the dividing bacterias.
The cell cycle
1) Labile cells (GI tract, blood cells)
- Described as parenchymal cells that are normally found in the G0 phase that can be stimulated to enter the G1
- Undergo continuous replication, and the interval between two consecutive mitoses is designated as the cell cycle
- After division, the cells enter a gap phase (G1), in which they pursue their own specialized activities
• If they continue in the cycle, after passing the restriction point (R), they are committed to a new round of division
• The G1 phase is followed by a period of nuclear DNA synthesis (S) in which all chromosomes are replicated
• The S phase is followed by a short gap phase (G2) and then by mitosis
• After each cycle, one daughter cell will become committed to differentiation, and the other will continue cycling
2) Stable cells (Hepatocytes, Kidney)
- After mitosis, the cells take up their specialized functions (G0).
- They do not re-enter the cycle unless stimulated by the loss of other cells
3) Permanent cells (neurons)
- Become terminally differentiated after mitosis and cannot re-enter the cell cycle
- Which cells do not have the ability to differentiate -> Cardiac myocytes
CELLS ORGANELLES
Cell parts:
Mitochondrion – double MB structure responsible for cellular metabolism – powerhouse of the cell
Nucleus – controls synthetic activities and stores genetic information
Ribosome – site of mRNA attachment and amino acid assembly, protein synthesis
Endoplasmic reticulum – functions in intracellular transportation
Gogli apparatus/complex – composed of membranous sacs – involved in production of large CHO molecules & lysosomes
Lysosome – organelle contains hydrolytic enzymes necessary for intracellular digestion
Membrane bag containing digestive enzymes
Cellular food digestion – lysosome MB fuses w/ MB of food vacuole & squirts the enzymes inside. Digested food diffuses through the vacuole MB to enter the cell to be used for energy or growth. Lysosome MB keeps the cell iself from being digested
-Involved mostly in cells that like to phagocytose
-Involved in autolytic and digestive processes
-Formed when the Golgi complex packages up an especially large vesicle of digestive enzyme proteins
Phagosome
– vesicle that forms around a particle (bacterial or other) w/in the phagocyte that engulfed it
- Then separates from the cell membrane bag & fuses w/ lysozome to receive contents
- This coupling forms phagolysosomes in which digestion of the engulfed particle occurs
Microbodies:
- Contain catalase
- Bounded by a single membrane bag
- Compartments specialized for specific metabolic pathways
- Similar in function to lysosomes, but are smaller & isolate metabolic reactions involving H2O2
- Two general families:
· Peroxisomes: transfer H2 to O2, producing H2O2 – generally not found in plants
· Glyoxysomes: common in fat-storing tissues of the germinating seeds of plants
¨ Contain enzymes that convert fats to sugar to make the energy stored in the oils of the seed available
Inclusions
– transitory, non-living metabolic byproducts found in the cytoplasm of the cell
- May appear as fat droplets, CHO accumulations, or engulfed foreign matter.