Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

DISTORTION OF THE PATTERN

Distortion is dependant on temperature & time interval before investing .
To avoid any distortion ,
Invest the pattern as soon as possible .
Proper handling of the pattern .

PREREQUISITES
Wax pattern should be evaluated for smoothness , finish & contour .
Pattern is inspected under magnification & residual flash is removed .

Casting Alloys

Applications-inlay, onlay,  crowns, and bridges

Terms

a. Precious-based on valuable elements
b. Noble or immune-corrosion-resistant element or alloy
c. Base or active-corrosion-prone alloy
d. Passive -corrosion resistant because of surface oxide film
e. Karat (24 karat is 100% gold; 18 karat is 75% gold)
f. Fineness (1000 fineness is I00% gold; 500 fineness is 50% gold)

Classification

High-gold alloys are > 75% gold or other noble metals

Type 1-    83% noble metals (e.g., in simple inlays)
Type II-≥78% noble metals (e.g.,in inlays and onlays)
Type IlI-≥75% noble metals (e.g., in crowns and bridges)
Type IV-≥75% noble metals (e.g., in partial dentures)

Medium-gold alloys are 25% to 75% gold or other noble metals

Low-gold alloys are <25% gold or other noble metals

Gold-substitute alloys arc alloys not containing gold

(1) Palladium-silver alloys-passive .because of mixed oxide film
(2) Cobalt-chromium alloys-passive because of Cr203 oxide film
(3) Iron-chromium alloys-passive because of Cr203 oxide film

Titanium alloys are based on 90% to 100% titanium ; passive because of TiO2 oxide film

Components of gold alloys

-    Gold contributes to corrosion resistance
-    Copper contributes to hardness and strength
-    Silver counteracts orange color of copper
-   Palladium increases melting point and hardness
-    Platinum increases melting point
-    Zinc acts as oxygen scavenger during casting

Manipulation

-    Heated to just beyond melting temperature for casting
o    Cooling shrinkage causes substantial contraction

Properties

Physical

-    Electrical and thermal conductors
-   Relatively low coefficient of thermal expansion

Chemical

-    Silver  content affects susceptibility to tarnish
-   Corrosion resistance  is attributable to nobility or passivation

Mechanical

-   High tensile and compressive strengths but relatively weak in thin sections, such as margins, and can be deformed relatively easily
-    Good wear resistance except in contact with Porcelain
 

Investment Techniques 

Single step investing technique:
The investing procedure is carried out in one step either by brush technique or by vacuum technique.

a). Brush technique:
The accurate water-powder ratio is mixed under vacuum. A brush is then used to paint the wax pattern with mix then the casting ring is applied over the crucible former and the ring is filled under vibration until it is completely filled.

b). vacuum technique:
• The mix in first hand spatulated, and then with the crucible former and pattern is place, then ring is attached to the mixing bowl.
• The vacuum hose is then attached to the assembly. The bowel is inverted and the ring is filled under vacuum and vibration

Two-step investing technique:

The investing procedure is carried out in two steps:

• First, the wax pattern is painted with a thick mix andis left till complete setting, the set investment block(first cost) is immersed in water for about tenminutes . the casting ring is then applied over the crucible former and filled with the properly mixedinvestment (second coat) till the ring is completely filled and the mix is left to set.The two-step investing technique is recommendedwhenever greater amount of expansion is required. Thistechnique also minimizes the distortion of the waxpattern and provides castings with smoother surfaces.

• The investment is allowed to set for the recommendedtime (usually one-hour) then the crucible former is removed. If a metal sprue former is used, it is removedby heating over a flame to loosen it from the wax pattern. Any loose particles of investment should beblown off with compressed air should be placed in a humidor if stored overnight.
 

COMPOSITE RESINS

Types

  • Amount of filler-25% to 65% volume, 45% to 85% weight
  • Filler particle size (diameter in microns)
    • Macrofill 10 to 100 µm (traditional composites)
    • Midi fill- 1 to 10 µm(small particle composites)
    • Minifill— 0.l to 1 µm
    • Microfill-: 0.01 to  0.1 µm (fine particle composites)
    • Hybrid--blend (usually or  microfill and midifill or minifill and microfill)
  • Polymerization method
    • Auto-cured (self-cured)
    • Visible light cured
    • Dual cured
    • Staged cure
  • Matrix chemistry
    • BIS-GMA type
    • Urethane dimethacrylate (UDM or UDMA) type
    • TEGDMA-diluent monomer to reduce  viscosity

Properties

I. Physical

a. Excellent thermal and electrical insulator
b. Very dense
c. Excellent dimensional stability
d. Good reproduction of fine detail of hard and soft tissues

2. Chemical

a. Heating will reverse the reaction (decompose the material into calcium sulfate hemihydrate, the original dry component)
b. Models, casts, and dies should be wet during grinding or cutting operations to prevent heating

3. Mechanical

a. Better powder packing and lower water contents at mixing lead to higher compressive strengths (plaster < stone < diestone)
b. Poor resistance to abrasion

4. Biologic

a. Materials are safe for contact with external - epithelial tissues
b. Masks should be worn during grinding or polishing operations that are likely to produce gypsum dust

Mercury hygiene

  • Do not contact mercury with skin
  • Clean up spills to minimize mercury vaporization
  • Store mercury or precapsulated products in tight containers
  • Only triturate amalgam components-in tightly- sealed capsules
  • Use amalgam with covers
  • Store spent amalgam under water or fixer in a tightly sealed jar
  • Use high vacuum suction during amalgam alloy placement, setting, or removal when mercury may be vaporized
  • Polishing amalgams generally causes localized melting of silver-mercury phase with release of mercury vapor, so water cooling and evacuation must be used

CASTING: casting is the process by which the wax pattern of a restoration is converted to a replicate in a dental alloy. The casting process is used to make dental restorations such as inlays, onlays, crowns, bridges and removable partial dentures.

Objectives of casting

1) To heat the alloy as quickly as possible to a completely molten condition.
2) To prevent oxidation by heating the metal with awell adjusted torch .
3) To produce a casting with sharp details by having adequate pressure to the well melted metal to force into the mold.


STEPS IN MAKING A CAST RESTORATION
1. TOOTH PREPARATION
2. IMPRESSION
3. DIE PREPARATION
4. WAX PATTERN FABRICATION
5. SPRUING

Explore by Exams