NEET MDS Lessons
Dental Materials
Glass Ionomer Cements
Applications
a. Class V restorations-resin-modified glass ionomers for geriatric dentistry
b. Class II restorations-resin-modified glass ionomers, metal-modified glass ionomers in pediatric dentistry
c. Class III restorations-resin-modified glass ionomers
d. permanent cementing of inlays, crowns, bridges, and/or orthodontic band/brackets. In addition, it can be used as a cavity liner and as a base.
Classification by composition
a. Glass ionomer-limited use
b. Metal-modified glass ionomer-limited use
c. Resin-modified glass ionomer-popular use
Components
a. Powder-aluminosilicate glass
b. Liquid-water solution of copolymers (or acrylic acid with maleic, tartaric, or itaconic acids) and water-soluble monomers (e.g., HEMA)
Reaction (may involve several reactions and stages of setting)
a. Glass ionomer reaction (acid-base reaction of polyacid and ions released from aluminosilicate glass particles)
- Calcium, aluminum, fluoride, and other ions released by outside of powder particle dissolving in acidic liquid
- Calcium ions initially cross-link acid functional copolymer molecules
- Calcium cross-links are replaced in 24 to 48 hours by aluminum ion cross-links, with increased hardening of system
- If there are no other reactants in the cement (e.g., resin modification), then protection from saliva is required during the first 24 hours
b. Polymerization reaction (polymerization of double bonds from water-soluble monomers and/or pendant groups on copolymer to form cross-linked matrix)
- Polymerization reaction can be initiated with chemical (self-curing) or light-curing steps
- Cross-linked polymer matrix ultimately interpenetrates glass ionomer matrix
Manipulation
a. Mixing-powder and liquid components may be manually mixed or may be precapsulated for mechanical mixing
b. Placement-mixture is normally syringed into place
c. Finishing-can be immediate if system is resin-modified (but otherwise must be delayed 24 to 72 hours until aluminum ion replacement reaction is complete)
d. Sealing-sealer is applied to smoothen the surface (and to protect against moisture affecting the glass ionomer reaction)
Properties
1. Physical
-Good thermal and electrical insulation
-Better radiopacity than most composites
-Linear coefficient of thermal expansion and contraction is closer to tooth structure than for composites (but is less well matched for resin-modified systems)
-Aesthetics of resin-modified systems are competitive with composites
2. Chemical
-Reactive acid side groups of copolymer molecules may produce chemical bonding to tooth structure
-Fluoride ions are released
(1) Rapid release at first due to excess fluoride ions in matrix
(2) Slow release after 7 to 30 days because of slow diffusion of fluoride ions out of aluminosilicate particles
-Solubility resistance of resin-modified systems is close to that of composites
3. Mechanical properties
-Compressive strength of resin-modified systems is much better than that of traditional glass ionomers but not quite as strong as composites
- Glass ionomers are more brittle than composites
4. Biologic properties
- Ingredients are biologically kind to the pulp
- Fluoride ion release discourages secondary canes
SELECTION OF SPRUE
1 . DIAMETER :
It should be approximately the same size of the thickest portion of the wax pattern .
Too small sprue diameter suck back porosity results .
2 . SPRUE FORMER ATTACHMENT :
Sprue should be attached to the thickest portion of the wax pattern .
It should be Flared for high density alloys & Restricted for low density alloys .
3 . SPRUE FORMER POSITION
Based on the
1. Individual judgement .
2. Shape & form of the wax pattern .
Patterns may be sprued directly or indirectly .
Indirect method is commonly used
Denture Liners
Use - patients with soft tissue irritation
Types
Long-term liners (soft liners)-used over a period of months for patients with severe undercuts or continually sore residual ridges
Short-term liners (tissue conditioners)-used to facilitate tissue healing over several days
Structure
Soft liners-plasticized acrylic copolymers or silicone rubber
Tissue conditioners-PEMA plasticized with ethanol and aromatic esters
Properties
Liners flow under low pressure, allowing adaptation to soft tissues, but are elastic during chewing forces.
Low initial hardness, but liner becomes harder as plasticizers are leached out during intraoral use
Some silicone rubber liners support growth of yeasts
Dental Solders
Applications-bridges and orthodontic appliances
Terms
Soldering -joining operation using filler metal that melts below 500° C
Brazing -joining operation using filler metal that melts above 500°C
Welding-melting and alloying of pieces to be joined
Fluxing
-Oxidative cleaning of area to be soldered
- Oxygen scavenging to prevent oxidation of alloy being soldered
16- 650 -- 650 fineness solder to be used with 16-karat alloys; fineness refers to the gold content
Classification
a. Gold solders-bridges
b. Silver solders-gold-substitute bridges and orthodontic alloys
Structure of gold solders
Composition-lower gold content than of alloys being soldered
Manipulation-solder must melt below melting temperature of alloy
Properties
1. Physical-similar to alloys being joined
2. Chemical-more prone to chemical and electrochemical corrosion
3. Mechanical-similar to alloy being joined
4. Biologic-similar to alloys being joined
Structure of gypsum products
Components
a. Powder (calcium sulfate hemihydrate = CaSO4½H2O)
b. Water (for reaction with powder and dispersing powder)
Chromium Alloys for Partial Dentures
Applications - Casting partial denture metal frameworks
Classification
a. Cobalt-chromium
b. Nickel-chromium
c. Cobalt-chromium-nickel
Composition
a. Chromium-produces a passivating oxide film for corrosion resistance
b. Cobalt-increase~ the rigidity of the alloy
c. Nickel-increases the ductility of the alloy
d. Other elements-increase strength and castability
Manipulation
a. Requires higher temperature investment materials
b. More difficult to cast because less dense than gold alloys usually requires special casting equipment
c. Much more difficult to finish and polish because of higher strength and hardness
Properties
a. Physical-less dense_than gold alloys
b. Chemical-passivating corrosion behavior
c. Mechanical-stronger. stiffer. and harder than gold alloys
d. Biologic
-Nickel may cause sensitivity in some individuals (I % of men and 11 % of women)
-Beryllium in some alloys forms oxide that is toxic to lab technicians
COMPOSITE RESINS
Types
- Amount of filler-25% to 65% volume, 45% to 85% weight
- Filler particle size (diameter in microns)
- Macrofill 10 to 100 µm (traditional composites)
- Midi fill- 1 to 10 µm(small particle composites)
- Minifill— 0.l to 1 µm
- Microfill-: 0.01 to 0.1 µm (fine particle composites)
- Hybrid--blend (usually or microfill and midifill or minifill and microfill)
- Polymerization method
- Auto-cured (self-cured)
- Visible light cured
- Dual cured
- Staged cure
- Matrix chemistry
- BIS-GMA type
- Urethane dimethacrylate (UDM or UDMA) type
- TEGDMA-diluent monomer to reduce viscosity