Talk to us?

Dental Materials - NEETMDS- courses
NEET MDS Lessons
Dental Materials

I . Procedure for single casting :

A 2.5 mm sprue former is recommended
for molar crowns 2.0 mm for premolars & partial coverage crowns .

II . Procedure for multiple casting :

Each unit is joined to a runner bar .

A single sprue feeds the runner bar

4 . SPRUE FORMER DIRECTION
Sprue Should be directed away from the delicate parts of the pattern
It should not be at right angles to a flat surface .(leads to turbulance  porosity .)
Ideal angulation is 45 degrees .

5 . SPRUE FORMER LENGTH

Depends on the length of casting ring .. Length of the Sprue former should be such that it keeps the wax pattern about 6 to 8 mm away from the casting ring. Sprue former should be no longer than 2 cm. The pattern should be placed as close to the centre of the ring as possible.

Significance

Short Sprue Length:

The gases cannot be adequately vented to permit the molten alloy to fill the ring completelyleading to Back Pressure Porosity.

Long Sprue Length:

Fracture of investment, as mold will not withstand the impact force of the entering molten alloy.

Top of wax should be adjusted for :

6 mm for gypsum bonded investments .

3 -4 mm for phosphate bonded investments .
TYPES OF SPRUES

I . - Wax . II . Solid

- Plastic . Hollow
- Metal .

Mechanical properties

1.  Resolution of forces

Uniaxial (one-dimensional) forces-compression, tension, and shear

Complex forces-torsion, flexion. And diametral

2. Normalization of forces and deformatations

Stress

 Applied force (or material’s resistance to force) per unit area

Stress-force/area (MN/m2)

Strain

Change in length per unit of length because of force

Strain-(L- Lo)/(Lo); dimensionless units

3. Stress-strain diagrams

Plot of stress (vertical) versus strain (horizontal)

  • Allows convenient comparison of materials
  • Different curves for compression, tension, and shear
  • Curves depend on rate of testing and temperature

4. Analysis of curves

  • Elastic behavior
    • Initial response to stress is elastic strain
    • Elastic modulus-slope of first part of curve and represents stiffness of material or the resistance to deformation under force
    • Elastic limit (proportional limit)- stress above which the material no longer behaves totally elastically
    • Yield strength-stress that is an estimate of the elastic limit at 0.002 permanent strain
    • Hardness-value on a relative scale that estimates the elastic limit in terms of a material’s resistance to indentation (Knoop hardness scale, Diamond pyramid, Brinnell, Rockwell hardness scale, Shore A hardness scale, Mohs hardness scale

 

  • Resilience-area under the stress strain curve up to the elastic limit (and it estimates the total elastic energy that can be absorbed before the onset of plastic deformation)
  • Elastic and plastic behavior
  • Beyond the stress level of the elastic  limit, there is a combination of elastic  and plastic strain
  • Ultimate strength-highest stress  reached before fracture; the ultimate compressive strength is greater than the ultimate shear strength and the ultimate tensile strength
  • Elongation (percent elongation)- percent change in length up to the point of fracture = strain x 100%
  • Brittle materials-<5% elongation at fracture
  • Ductile materials->5% elongation  at fracture
  • Toughness-area under the stress strain  curve up to the point of fracture (it estimates the total energy absorbed up to fracture)
  • Time-dependent behavior

the faster a stress is applied, the more likely a material is to store the energy elastically and not plastically

  • Creep-strain relaxation
  • Stress relaxation

Acrylic Appliances

Use - space maintenance  or tooth movement for orthodontics and pediatric dentistry

1. Components

a. Powder-PMMA powder. peroxide initiator, and pigments

b. Liquid-MMA monomer, hydroquinone inhibitor, cross-linking agents, and chemical accelerators (N, N-dimethyl-p-toluidine)

2. Reaction

 PMMA powder makes mixture viscous for manipulation before curing . Chemical accelerators cause decomposition of benzoyl peroxide into free radicals that initiate polymerization of monomer .  New PMMA is formed into a matrix that surrounds PMMA powder. Linear shrinkage of 5% to 7% during setting. but dimensions of appliances are not critical

CLEANING AND PICKLING ALLOYS

The surface oxidation or other contamination of dental alloys is a troublesome occurrence. The oxidation of base metals in most alloys can be kept to a minimum or avoided by using a properly adjusted method of heating the alloy and a suitable amount of flux when melting the alloy . Despite these precautions, as the hot metal enters the mold, certain alloys tend to become contaminated on the surface by combining with the hot mold gases, reacting with investment ingredients, or physically including mold particles in the metal surface. The surface of most cast, soldered, or otherwise heated metal dental appliances is cleaned by warming the structure in suitable solutions, mechanical polishing, or other treatment of the alloy to restore the normal surface condition.

Surface tarnish or oxidation can be removed by the process of pickling. Castings of noble or high-noble metal may be cleaned in this manner by warming them in a 50% sulfuric acid and water solution . . After casting, the alloy (with sprue attached) is placed into the warmed pickling solution for a few seconds. The pickling solution will reduce oxides that have formed during casting. However, pickling will not eliminate a dark color caused by carbon deposition 

The effect of the solution can be seen by comparing the submerged surfaces to those that have still not contacted the solution. the ordinary inorganic acid solutions and do not release poisonous gases on boiling (as sulfuric acid does). In either case, the casting to be cleaned is placed in a suitable porcelain beaker with the pickling solution and warmed gently, but short of the boiling point. After a few moments of heating, the alloy surface normally becomes bright as the oxides are reduced. When the heating is completed, the acid may be poured from the beaker into the original storage container and the casting is thoroughly rinsed with water. Periodically, the pickling solution should be replaced with fresh solution to avoid excessive contamination.

Precautions to be taken while pickling

With the diversity of compositions of casting alloys available today, it is prudent to follow the manufacturer's instructions for pickling precisely, as all pickling solutions may not be compatible with all alloys. Furthermore, the practice of dropping a red-hot casting into the pickling solution should beavoided. This practice may alter the phase structure of the alloy or warp thin castings, and splashing acid may be dangerous to the operator. Finally, steel or stainless steel tweezers should not be used to remove castings from the pickling solutions. The pickling solution may dissolve the tweezers and plate the component metals onto the casting. Rubber-coated or Teflon tweezers are recommended for this purpose.

COMPOSITE RESINS

Reaction

  • Free radical polymerization

Monomers + initiator. + accelerators-+ polymer molecules

  • Initiators-start polymerization by decomposing and reacting with monomer
  • Accelerators-speed up initiator decomposition
  • Amines used  for accelerating self –curing  systems
  •  Light  used for accelerating light-curing systems

Retarders or inhibitors-prevent premature polymerization

Mercury hygiene

  • Do not contact mercury with skin
  • Clean up spills to minimize mercury vaporization
  • Store mercury or precapsulated products in tight containers
  • Only triturate amalgam components-in tightly- sealed capsules
  • Use amalgam with covers
  • Store spent amalgam under water or fixer in a tightly sealed jar
  • Use high vacuum suction during amalgam alloy placement, setting, or removal when mercury may be vaporized
  • Polishing amalgams generally causes localized melting of silver-mercury phase with release of mercury vapor, so water cooling and evacuation must be used

Physical reaction-cooling causes reversible hardening

Chemical reaction-irreversible reaction during setting

Explore by Exams